Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

Determining physiological maturity for optimal seed quality and reduced yield loss in foxtail millet (Setaria italica (L.) P. Beauv.)

DOI
https://doi.org/10.14719/pst.11195
Submitted
8 August 2025
Published
29-10-2025

Abstract

The present study aimed to determine the right stage of physiological maturity (PM) in foxtail millet cultivars (‘Suryanandi’ and ‘SiA 3156’) during two post-rainy seasons. The seed formation/developmental phase required about one week after flowering in year 1 and two weeks in year 2 in both cultivars, due to varying climatic parameters. The maturation of seeds progressed gradually, with a loss in moisture and gain in hardness, test weight and seed yield, during subsequent harvests at weekly intervals, which continued until 35 days after anthesis (DAA) (year 1) and 42 DAA (year 2) in both cultivars. The seed quality traits reached their maximum at 35 DAA during year 1 and thereafter declined gradually; the decline was more prominent in the case of aged seeds, indicating that seed viability would be lost faster due to delayed harvests. During year 2, the seed quality traits were at their maximum in the harvest at 42 DAA. Due to significant reduction in quality traits at a faster rate at later stages of harvest, the polynomial regression analysis predicted maximum quality of seeds at 38 DAA. The study found that the seeds reached the right stage of PM at 35 DAA in the year 1 and at 38 DAA during year 2 in both cultivars, providing valuable insights that PM generally occurs between 35 and 38 DAA, while the optimal harvest window is between 35 and 42 DAA during the post-rainy season in foxtail millet. At PM, the panicles turn brown, the seeds become hard, shiny, pale-yellow with elliptic streaks and a dark-brown depression develops at the hilar end and these act as visual indicators for the optimal time of harvest in foxtail millet.

References

  1. 1. Yang X, Wan Z, Perry L, Lu H, Wang Q, Zhao C, et al. Early millet use in northern China. Proc Natl Acad Sci USA. 2012;109(10):3726. https://doi.org/10.1073/pnas.1115430109
  2. 2. Longvah T, Ananthan R, Bhaskarachary K, Venkaiah K. Indian food composition tables. Hyderabad: National Institute of Nutrition, Indian Council of Medical Research. 2017.
  3. 3. Geervani P, Eggum BO. Nutrient composition and protein quality of minor millets. Plant Foods Hum Nutr. 1989;39(2):201-08. https://doi.org/10.1007/BF01091900
  4. 4. Itagi S, Naik R, Bharati P, Sharma P. Readymade foxtail millet mix for diabetics. Int J Sci Nat. 2012;3(1):47-50.
  5. 5. Diao X. Production and genetic improvement of minor cereals in China. Crop J. 2017;5(2):103-14. https://doi.org/10.1016/j.cj.2016.06.004
  6. 6. Kannababu N, Deepika C, Venkateswarlu R, Hariprasanna K, Das IK. Physiological maturity of seeds in kodo millet (Paspalum scrobiculatum L.) cultivars across seasons. Plant Physiol Rep. 2023;28(2):209-20. https://doi.org/10.1007/s40502-023-00725-9
  7. 7. Kannababu N, Amasiddha B, Venkateswarlu R, Das IK, Prabhakar B, Tonapi VA. Determination of physiological and harvestable mass-maturity of seeds during rainy and post-rainy seasons in barnyard millet (Echinochloa frumentacea (Roxb). Link). Range Manag Agrofor. 2023;44(1):84-94.
  8. 8. Harrington JF, Kozlowski TT. Seed storage and longevity. Seed Biol. 1972;3:145-245. https://doi.org/10.59515/rma.2023.v44.i1.10
  9. 9. Ellis RH. Temporal patterns of seed quality development, decline and timing of maximum quality during seed development and maturation. Seed Sci Res. 2019;29(2):135-42. https://doi.org/10.1017/S0960258519000102
  10. 10. Bewley JD, Black M, Halmer P. The encyclopedia of seeds: science, technology and uses. Wallingford: CABI. 2006.
  11. 11. Finch-Savage WE, Bassel GW. Seed vigour and crop establishment: extending performance beyond adaptation. J Exp Bot. 2016;67(3):567-91. https://doi.org/10.1093/jxb/erv490
  12. 12. Eskandari H. Seed quality changes in cowpea (Vigna sinensis) during seed development and maturation. Seed Sci Technol. 2012;40(1):108-12. https://doi.org/10.15258/sst.2012.40.1.12
  13. 13. Ghassemi-Golezani K, Hosseinzadeh-Mahootchy A. Changes in seed vigour of faba bean (Vicia faba L.) cultivars during development and maturity. Seed Sci Technol. 2009;37(3):713-20. https://doi.org/10.15258/sst.2012.40.1.12
  14. 14. Samarah NH, Abu-Yahya A. Effect of maturity stages of winter-and spring-sown chickpea (Cicer arietinum L.) on germination and vigour of the harvested seeds. Seed Sci Technol. 2008;36(1):177-90. https://doi.org/10.15258/sst.2008.36.1.19
  15. 15. Vidigal DD, Dias DC, Dias LA, Finger FL. Changes in seed quality during fruit maturation of sweet pepper. Sci Agric. 2011;68:535-39. https://doi.org/10.1590/S0103-90162011000500004
  16. 16. Ramya M, Yogeesha HS, Bhanuprakash K, Gowda RV. Physiological and biochemical changes during seed development and maturation in onion (Allium cepa L.). Vegetable Sci. 2012;39(02):157-60.
  17. 17. Oliveira GE, Pinho RG, Andrade TD, Pinho ÉV, Santos CD, Veiga AD. Physiological quality and amylase enzyme expression in maize seeds. Cienc Agrotec. 2013;37:40-48. https://doi.org/10.1590/S1413-70542013000100005
  18. 18. International Seed Testing Association (ISTA). International rules for seed testing. Bassersdorf: ISTA. 2015.
  19. 19. Delouche JC, Baskin CC. Accelerated aging techniques for predicting the relative storability of seed lots. Seed Sci Technol. 1973;1:427-52.
  20. 20. Bernfeld P, Colowick S P, Kaplan N O. Methods in Enzymology. Academic Press. 1955:145-158.
  21. 21. Leprince O, Pellizzaro A, Berriri S, Buitink J. Late seed maturation: drying without dying. J Exp Bot. 2017;68(4):827-41. https://doi.org/10.1093/jxb/erw363
  22. 22. Marcos-Filho J. Fisiologia de sementes de plantascultivadas. 2. ed. Londrina: ABRATES. 2015;659.
  23. 23. Araujo EF, Araujo RF, Sofiatti V, Silva RF. Maturation of sweet-corn seeds: Super Sweet group. Rev Bras Sementes. 2006;28:69-76. https://doi.org/10.1590/S0101-31222006000200009
  24. 24. Shaheb MR, Islam MN, Nessa A, Hossain MA. Effect of harvest times on the yield and seed quality of French bean. SAARC J Agric. 2015;13(1):1-3. https://doi.org/10.3329/sja.v13i1.24175
  25. 25. Ma ChunHui MC, Cheng Jun CJ, Han JianGuo HJ, Chen JianXin CJ, Yang ZhongLiang YZ, Dong YuMin DY. Study on the dynamic changes of physiology and biochemistry during the seed development of tall fescue in Xinjiang. Pratacult Sci. 2002;11(4):76-80.
  26. 26. Ellis RH, Pieta Filho C. The development of seed quality in spring and winter cultivars of barley and wheat. Seed Sci Res. 1992;2(1):9-15. https://doi.org/10.1017/S0960258500001057
  27. 27. Maiti RK, Raju PS, Bidinger FR. Studies on germinability and some aspects of pre-harvest physiology of sorghum grain. Seed sci technol. 1985;13(1):27-35.
  28. 28. Tonapi VA, Varnavasiappan S, Navi SS, Ravinder Reddy C, Karivatharaju TV. Effect of environmental factors during seed development and maturation on seed quality in Sorghum bicolor (L.) Moench. Plant Arch. 2006;6(2):515-19.
  29. 29. Ekpong B, Sukprakarn S. Seed physiological maturity in dill (Anethum graveolens L.). Agric Nat Resour. 2008;42(5):1-6.
  30. 30. Jalink H, Frandas A, Schoor RV, Bino JB. Chlorophyll fluorescence of the testa of Brassica oleracea seeds as an indicator of seed maturity and seed quality. Sci Agric. 1998;55:88-93. https://doi.org/10.1590/S0103-90161998000500016
  31. 31. Demir I, Ashirov AM, Mavi K. Effect of seed production environment and time of harvest on tomato (Lycopersicon esculentum) seedling growth. 2008;1:1-10. https://doi.org/10.3923/rjss.2008.1.10
  32. 32. Parthasarathi T, Velu G, Jeyakumar P. Impact of crop heat units on growth and developmental physiology of future crop production: A review. Res Rev J Crop Sci Technol. 2013;2(1):1-1.
  33. 33. Tzudir L, Bera P S, Chakraborty P K. Impact of temperature on the reproductive development in mungbean (Vigna radiata). Int J Bio-Resour Stress Manag. 2015;5:194-99. https://doi.org/10.5958/0976-4038.2014.00555.7
  34. 34. Basave Gowda BG, Gowda SJ. Effect of stage of harvest on seed germination during storage in hybrid sorghum. Seed Res. 1999;18(3):368-69.
  35. 35. Woodward FI. The impact of low temperatures in controlling the geographical distribution of plants. Philos Trans R Soc Lond B Biol Sci. 1990;326(1237):585-93. https://doi.org/10.1098/rstb.1990.0033
  36. 36. Pigott CD, Huntley JP. Factors controlling the distribution of Tilia cordata at the northern limits of its geographical range III. Nature and causes of seed sterility. New Phytol. 1981;87(4):817-39. https://doi.org/10.1111/j.1469-8137.1981.tb01716.x
  37. 37. Rahman SM, Ellis RH. Seed quality in rice is most sensitive to drought and high temperature in early seed development. Seed Sci Res. 2019;29(4):238-49. https://doi.org/10.1111/j.1469-8137.1981.tb01716.x
  38. 38. Jumrani K, Bhatia VS. Combined effect of high temperature and water-deficit stress imposed at vegetative and reproductive stages on seed quality in soybean. Indian J Plant Physiol. 2018;23(2):227-44. https://doi.org/10.1007/s40502-018-0365-9
  39. 39. Delouche J C. Seed production manual. National Seeds Corporation Ltd and Rockefeller Foundation. 1973.
  40. 40. ISTA. Handbook of Vigour Test Methods (3rd ed.). International Seed Testing association. 1995.
  41. 41. Fatonah K, Suliansyah I, Rozen N. Electrical conductivity for seed vigour test in sorghum (Sorghum bicolor). Cell Biol Dev. 2017;1(1):6-12. https://doi.org/10.13057/cellbioldev/v010102
  42. 42. Das R, Biswas S. Changes in biochemical and enzymatic activities with ageing in seeds of different sizes of sunflower (Helianthus annuus L.) under invigoration treatments. Plant Physiol Rep. 2022;27(1):81-95. https://doi.org/10.1007/s40502-021-00610-3
  43. 43. Damaris RN, Lin Z, Yang P, He D. The rice alpha-amylase, conserved regulator of seed maturation and germination. Int J Mol Sci. 2019;20(2):450. https://doi.org/10.3390/ijms20020450
  44. 44. Pollock BM, Roos EE. Seed and seedling vigour. Seed Biol I Importance Dev Germination. 1972:314-87.
  45. 45. Shephard HL, Naylor RE, Stuchbury T. The influence of seed maturity at harvest and drying method on the embryo, α-amylase activity and seed vigour in sorghum (Sorghum bicolor (L.) Moench). Seed Sci Technol. 1995:245-249.
  46. 46. Maria ILS, Eduardo LV, Leilson CG, Elizângela EC, Cristiane ECM, Salvador BT. Determination of harvest maturity in Capsicum baccatum L. seeds using physiological and biochemical markers. Aust J Crop Sci. 2015;9(11):1010-15.
  47. 47. Elias SG, Copeland LO. Physiological and harvest maturity of canola in relation to seed quality. Agron J. 2001;93(5):1054-58. https://doi.org/10.2134/agronj2001.9351054x
  48. 48. Jalink H, Van der Schoor R, Birnbaum YE, Bino RJ. Seed chlorophyll content as an indicator for seed maturity and seed quality. Acta Hortic. 1999;15:219-28. https://doi.org/10.17660/ActaHortic.1999.504.23
  49. 49. Smolikova G, Leonova T, Vashurina N, Frolov A, Medvedev S. Desiccation tolerance as the basis of long-term seed viability. Int J Mol Sci. 2020;22(1):101. https://doi.org/10.3390/ijms22010101
  50. 50. Abdul-Baki AA, Baker JE. Are changes in cellular organelles or membranes related to vigour loss in seeds. Seed Sci Technol. 1973;1(1):89-125.
  51. 51. Patrick JW, Offler CE. Compartmentation of transport and transfer events in developing seeds. J Exp Bot. 2001;52(356):551-64. https://doi.org/10.1093/jexbot/52.356.551
  52. 52. Saibabu KGRS, Hussaini SH, Reddy BMM, Reddy PR. Effect of nitrogen fertilization on maturity, seed yield and quality in rice. Seed Res. 1984;12(2):51-55.
  53. 53. Lessa BF, Dutra AS, Silva TM, Santos CC, Sousa WD. Physiological maturation in seeds of sweet soghum for foliar fertilisation with silicate. Rev Caatinga. 2017;30(3):718-29. https://doi.org/10.1590/1983-21252017v30n320rc

Downloads

Download data is not yet available.