Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Multivariate analysis of morphological diversity in six orange carrot germplasms cultivated in semi-arid regions of Algeria

DOI
https://doi.org/10.14719/pst.11203
Submitted
8 August 2025
Published
28-12-2025

Abstract

This study explores the morphological differentiation among six orange carrot germplasms, Muscad d’Alger, Touchon, Breclium, Nantaise, Super Muscad and Nantaise améliorée, cultivated under semi-arid conditions in Algeria. A total of 30 morphological descriptors, based on criteria from both the International Union for the Protection of New Varieties of Plants (UPOV) and the International Plant Genetic Resources Institute (IPGRI), were utilised to evaluate phenotypic variability and identify the most informative traits for diversity assessment, to leverage them in selection and improvement programs. The descriptors encompassed structural features of the plant, leaf morphology and root characteristics. To quantify diversity and identify classification patterns, Shannon–Weaver diversity index (H’), Principal Component Analysis (PCA) and hierarchical clustering were applied. The H’ values varied widely, from 0 (e.g., root branching) to 1.32 for traits such as the length-to-width ratio of the root, shape of the root in longitudinal section, diameter of the core relative to total diameter, extent of green pigmentation in longitudinal section, root emergence above soil level and timing of root tip colouration. The average H’ across all descriptors and populations was 1.32, indicating a high level of morphological diversity. PCA results revealed that 11 out of the 30 traits contributed most significantly to the observed variance, underscoring their potential utility in discriminating between genotypes. Further multivariate analyses, including factorial correspondence and cluster analyses, which incorporated four qualitative, four pseudo-qualitative and twenty-two quantitative traits, enabled the grouping of the studied varieties into three distinct clusters. The first cluster contained Muscad varieties, the second included Touchon and Breclium, while the third comprised Nantaise and its improved variant. These findings provide a valuable framework for the strategic selection, conservation and utilisation of orange carrot germplasms in breeding programs adapted to semi-arid environments.

References

  1. 1. Iorizzo M, Senalik DA, Ellison SL, Grzebelus D, Cavagnaro PF, Allender C, et al. Genetic structure and domestication of carrot (Daucus carota subsp. sativus) (Apiaceae). Am J Bot. 2013;100(5):930-8. https://doi.org/10.3732/ajb.1300055
  2. 2. Lallouche B, Hadj Kouider B. Evaluate the salt tolerance of Algerian carrot (Daucus carota L.) germplasm using germination, biochemical parameters and plant growth potential. Afr J Biol Sci. 2025;7(4):734-51.
  3. 3. Boadi NO, Badu M, Kortei NK, Saah SA, Annor B, Mensah MB, et al. Nutritional composition and antioxidant properties of three varieties of carrot (Daucus carota). Sci Afr. 2021;12:e00801. https://doi.org/10.1016/j.sciaf.2021.e00801
  4. 4. Purewal SS, Verma P, Kaur P, Sandhu KS, Singh RS, Kaur A, et al. A comparative study on proximate composition, mineral profile, bioactive compounds and antioxidant properties in diverse carrot (Daucus carota L.) flour. Biocatal Agric Biotechnol. 2023;48:102640. https://doi.org/10.1016/j.bcab.2023.102640
  5. 5. Sharma KD, Karki S, Thakur NS, Attri S. Chemical composition, functional properties and processing of carrot - a review. J Food Sci Technol. 2012;49(1):22-32. https://doi.org/10.1007/s13197-011-0310-7
  6. 6. Food and Agriculture Organization of the United Nations. World food and agriculture - statistical yearbook 2020. Rome; 2020.
  7. 7. Levizou E, Papadimitriou T, Papavasileiou E, Papadimitriou N, Kormas KA. Root vegetables bioaccumulate microcystins-LR in a developmental stage-dependent manner under realistic exposure scenario: the case of carrot and radish. Agric Water Manag. 2020;240:106274. https://doi.org/10.1016/j.agwat.2020.106274
  8. 8. Maynard DN, Hochmuth GJ. Handbook for vegetable growers. New York: John Wiley & Sons; 1997
  9. 9. Bolton A, Klimek-Chodacka M, Martin-Millar E, Grzebelus D, Simon PW. Genome-assisted improvement strategies for climate-resilient carrots. In: Genomic designing of climate-smart vegetable crops. Cham: Springer International Publishing; 2020. p. 309-43 https://doi.org/10.1007/978-3-319-97415-6_6
  10. 10. Cerezal-Mezquita P, Bugueño-Muñoz W. Drying of carrot strips in indirect solar dehydrator with photovoltaic cell and thermal energy storage. Sustainability. 2022;14(4):2147. https://doi.org/10.3390/su14042147
  11. 11. Bolton A, Simon P. Variation for salinity tolerance during seed germination in diverse carrot [Daucus carota (L.)] germplasm. HortScience. 2019;54(1):38-44. https://doi.org/10.21273/HORTSCI13333-18
  12. 12. Djoufack MMT, Kouam EB, Foko EMK, Anoumaa M, Meli GRL, Kaktcham PM, et al. Determinants and constraints of carrot (Daucus carota L.) production and marketing in Cameroon. PLoS One. 2024;19(1):e0296418. https://doi.org/10.1371/journal.pone.0296418
  13. 13. Ksouri A, Dob T, Belkebir A, Krimat S, Chelghoum C. Chemical composition and antioxidant activity of the essential oil and the methanol extract of Algerian wild carrot Daucus carota L. subsp. carota. J Mater Environ Sci. 2015;6(3):784-91.
  14. 14. Zatla AT, Dib MEA, Djabou N, Tabti B, Meliani N, Costa J, et al. Chemical variability of essential oil of Daucus carota subsp. sativus from Algeria. J Herbs Spices Med Plants. 2017;23(3):216-30. https://doi.org/10.1080/10496475.2017.1296053
  15. 15. Nakajima Y, Oeda K, Yamamoto T. Characterization of genetic diversity of nuclear and mitochondrial genomes in Daucus varieties by RAPD and AFLP. Plant Cell Rep. 1998;17(11):848-53. https://doi.org/10.1007/s002990050496
  16. 16. Hadjkouider B, Boutekrabt A, Lallouche B, Lamine S, Zoghlami N. Polymorphism analysis in some Algerian Opuntia species using morphological and phenological UPOV descriptors. Bot Sci. 2017;95(3):391-400. https://doi.org/10.17129/botsci.887
  17. 17. Akbar F, Rabbani MA, Masood MS, Shinwari ZK. Genetic diversity of sesame (Sesamum indicum L.) germplasm from Pakistan using RAPD markers. Pak J Bot. 2011;43(4):2153-60.
  18. 18. Lallouche B, Hadj Kouider B, Beloudah A, Ben Madani R, Boutekrabt A. Phenotypic characterization of some lettuce cultivars (Lactuca sativa L.) cultivated in Algeria. Agrobiologia. 2020;10(1):1787-96.
  19. 19. Lallouche B, Hadjkouider B, Benmehaia R. The first assessment of phenotypic diversity in four quinoa (Chenopodium quinoa Willd.) populations cultivated in Algeria based on morphological traits. Ecol Eng Environ Technol. 2025;26(6):275-85. https://doi.org/10.12912/27197050/204151
  20. 20. Kumari VN, Sivakumar S, Himakara DM. Multivariate analysis and multi-trait index-based selection of maize (Zea mays L.) inbreds for agromorphological and yield components. Plant Sci Today. 2025;e4206. https://doi.org/10.14719/pst.4206
  21. 21. UPOV. Daucus carota L. TG/49/8 Rev. Guidelines for the conduct of tests for distinctness, uniformity and stability. Geneva: International Union for the Protection of New Varieties of Plants; 2015.
  22. 22. IPGRI. Descriptors for wild and cultivated carrots Daucus carota L. Rome; 1998. p. 1-17
  23. 23. Williams WT. Pattern analysis in agricultural science. London: Pergamon Press; 1976.
  24. 24. Ward JH. Hierarchical grouping to optimize an objective function. J Am Stat Assoc. 1963;58(301):236-44. https://doi.org/10.1080/01621459.1963.10500845
  25. 25. Shannon CE, Weaver W. The mathematical theory of communication. Urbana: University of Illinois Press; 1949.
  26. 26. Al Khanjari S, Filatenko A, Hammer K, Buerkert A. Morphological spike diversity of Omani wheat. Gen Resour Crop Evol. 2008;55:1185-95. https://doi.org/10.1007/s10722-008-9319-9
  27. 27. Grebenstein C, Kos SP, De Jong TJ, Tamis WLM, De Snoo GR. Morphological markers for the detection of introgression from cultivated into wild carrot (Daucus carota L.) reveal dominant domestication traits. Plant Biol. 2013;15(3):531-40. https://doi.org/10.1111/j.1438-8677.2012.00662.x
  28. 28. Zdravkovska M, Agic R, Popsimonova G, Bogevska Z, Davitkovska M. Morphological characteristics and yield of carrot (Daucus carota L.) grown with application of microbiological fertilizers. J Agric Food Environ Sci. 2016;68:63-8.
  29. 29. Turner SD, Ellison SL, Senalik DA, Simon PW, Spalding EP, Miller ND. An automated image analysis pipeline enables genetic studies of shoot and root morphology in carrot (Daucus carota L.). Front Plant Sci. 2018;9:1703. https://doi.org/10.3389/fpls.2018.01703
  30. 30. Arif U, Aamir S, Khan MF, Siddiqui SU, Jatoi SA. Agro-morphological assessment and seed protein profiling in carrot (Daucus carota L.) germplasm. Pak J Bot. 2020;52(5):1825-33. https://doi.org/10.30848/PJB2020-5(7)
  31. 31. Char CD. Carrots (Daucus carota L.). In: Yahia EM, editor. Fruit and vegetable phytochemicals. 1st ed. Hoboken: Wiley; 2017. p. 969-78. https://doi.org/10.1002/9781119158042.ch46
  32. 32. Maksylewicz A, Baranski R. Intra-population genetic diversity of cultivated carrot (Daucus carota L.) assessed by analysis of microsatellite markers. Acta Biochim Pol. 2013;60(4):753-60. https://doi.org/10.18388/abp.2013_2053
  33. 33. Chaitra KC, Sarvamangala C, Manikanta DS, Chaitra PA, Fakrudin B. Insights into genetic diversity and population structure of Indian carrot (Daucus carota L.) accessions. J Appl Genet. 2020;61(3):303-12. https://doi.org/10.1007/s13353-020-00556-6

Downloads

Download data is not yet available.