Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 4 (2025)

CRISPR/Cas genome editing in microalgae: Revolutionizing biotechnology through precision genetic engineering

DOI
https://doi.org/10.14719/pst.11216
Submitted
9 August 2025
Published
22-10-2025 — Updated on 30-10-2025
Versions

Abstract

Microalgae biotechnology has witnessed a significant transformation with the advent of CRISPR/Cas genome editing technologies, which enabled precise gene alterations that were unattainable using conventional methods. Traditional transformation techniques have advanced to CRISPR-based platforms, mainly due to significant developments in delivery methods like as systems based on nanoparticles and RNP (ribonucleoprotein complexes), which overcame species-dependent barriers and demonstrated the innovative influence of CRISPR technology on genetic engineering of microalgal systems over traditional methods. Effective metabolic engineering advancements for improved pigment, lipid and biomolecule synthesis are crucial approaches. For this, comprehensive analyses of gene deletions or knockouts, overexpression and regulatory changes from model organisms like Chlamydomonas reinhardtii to economically important organisms like Nannochloropsis are important. This study highlights elevated expression of biosynthetic genes and suppression of competitive pathways, along with significant developments in multiplexed genome editing, which enable coordinated pathway alterations by precisely targeting many genes. Despite novel approaches, existing constraints like as off-target consequences, regulatory barriers and editing efficiency constraints are critically evaluated for enhancement of CRISPR technology in microalgal modification. Revolutionizing developments such as optogenetics-CRISPR inclusion, pan-genomic genetic modifications of microalgal populations and AI-driven autonomous genome engineering will establish engineering microalgae as leading platforms for sustainable biotechnology.

References

  1. 1. Ma Z, Cheah WY, Ng I-S, Chang J-S, Zhao M, Show PL. Microalgae-based biotechnological sequestration of carbon dioxide for net zero emissions. Trends Biotechnol. 2022;40(12):1439-53. https://doi.org/10.1016/j.tibtech.2022.09.002
  2. 2. Tarafdar A, Sowmya G, Yogeshwari K, Rattu G, Negi T, Awasthi MK, et al. Environmental pollution mitigation through utilization of carbon dioxide by microalgae. Environ Pollut. 2023;328:121623. https://doi.org/10.1016/j.envpol.2023.121623
  3. 3. Yen CL, Stone SJ, Koliwad S, Harris C, Farese RV Jr. Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res. 2008;49(11):2283-301. https://doi.org/10.1194/jlr.R800018-JLR200
  4. 4. Vingiani GM, De Luca P, Ianora A, Dobson ADW, Lauritano C. Microalgal enzymes with biotechnological applications. Mar Drugs. 2019;17(8):459. https://doi.org/10.3390/md17080459
  5. 5. Liang M-H, Wang L, Wang Q, Zhu J, Jiang J-G. High-value bioproducts from microalgae: strategies and progress. Crit Rev Food Sci Nutr. 2019;59(15):2423-41. https://doi.org/10.1080/10408398.2018.1455030
  6. 6. Wijffels RH, Barbosa MJ. An outlook on microalgal biofuels. Science. 2010;329(5993):796-9. https://doi.org/10.1126/science.1189003
  7. 7. Dhokane D, Shaikh A, Yadav A, Giri N, Bandyopadhyay A, Dasgupta S, et al. CRISPR-based bioengineering in microalgae for production of industrially important biomolecules. Front Bioeng Biotechnol. 2023;11:1267826. https://doi.org/10.3389/fbioe.2023.1267826
  8. 8. Baek K, Kim DH, Jeong J, Sim SJ, Melis A, Kim J-S, et al. DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Sci Rep. 2016;6:30620. https://doi.org/10.1038/srep30620
  9. 9. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-21. https://doi.org/10.1126/science.1225829
  10. 10. Anders C, Niewoehner O, Duerst A, Jinek M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature. 2014;513(7519):569-73. https://doi.org/10.1038/nature13579
  11. 11. Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. 2014;156(5):935-49. https://doi.org/10.1016/j.cell.2014.02.001
  12. 12. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015;163(3):759-71. https://doi.org/10.1016/j.cell.2015.09.038
  13. 13. Kim D, Kim S, Kim S, Park J, Kim J-S. Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq. Genome Res. 2016;26(3):406-15. https://doi.org/10.1101/gr.199588.115
  14. 14. Karvelis T, Bigelyte G, Young JK, Hou Z, Zedaveinyte R, Budre K, et al. PAM recognition by miniature CRISPR-Cas12f nucleases triggers programmable double-stranded DNA target cleavage. Nucleic Acids Res. 2020;48(9):5016-23. https://doi.org/10.1093/nar/gkaa208
  15. 15. Montagud-Martínez R, Márquez-Costa R, Heras-Hernández M, Dolcemascolo R, Rodrigo G. On the ever-growing functional versatility of the CRISPR-Cas13 system. Microb Biotechnol. 2024;17(2):e14418. https://doi.org/10.1111/1751-7915.14418
  16. 16. Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 2016;353(6299):aaf5573. https://doi.org/10.1126/science.aaf5573
  17. 17. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533(7603):420-4. https://doi.org/10.1038/nature17946
  18. 18. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576(7785):149-57. https://doi.org/10.1038/s41586-019-1711-4
  19. 19. Kindle KL. High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA. 1990;87(3):1228-32. https://doi.org/10.1073/pnas.87.3.1228
  20. 20. Debuchy R, Purton S, Rochaix J-D. The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J. 1989;8(10):2803-9. https://doi.org/10.1002/j.1460-2075.1989.tb08426.x
  21. 21. Marshall WF. Chlamydomonas as a model system to study cilia and flagella using genetics, biochemistry and microscopy. Front Cell Dev Biol. 2024;12:1412641. https://doi.org/10.3389/fcell.2024.1412641
  22. 22. Shimogawara K, Fujiwara S, Grossman A, Usuda H. High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics. 1998;148(4):1821-8. https://doi.org/10.1093/genetics/148.4.1821
  23. 23. León-Bañares R, González-Ballester D, Galván A, Fernández E. Transgenic microalgae as green cell-factories. Trends Biotechnol. 2004;22(1):45-52. https://doi.org/10.1016/j.tibtech.2003.11.003
  24. 24. Kumar M, Jeon J, Choi J, Kim S-R. Rapid and efficient genetic transformation of the green microalga Chlorella vulgaris. J Appl Phycol. 2018;30(3):1735-45. https://doi.org/10.1007/s10811-018-1396-3
  25. 25. Fischer N, Rochaix J-D. The flanking regions of PsaD drive efficient gene expression in the nucleus of the green alga Chlamydomonas reinhardtii. Mol Genet Genomics. 2001;265(5):888-94. https://doi.org/10.1007/s004380100485
  26. 26. Hallmann A. Advances in genetic engineering of microalgae. In: Grand challenges in algae biotechnology. Springer; 2020. p. 159-221. https://doi.org/10.1007/978-3-030-25233-5_5
  27. 27. Zhang Y-T, Jiang J-Y, Shi T-Q, Sun X-M, Zhao Q-Y, Huang H, et al. Application of the CRISPR/Cas system for genome editing in microalgae. Appl Microbiol Biotechnol. 2019;103(8):3239-48. https://doi.org/10.1007/s00253-019-09726-x
  28. 28. Baek K, Kim DH, Jeong J, Sim SJ, Melis A, Kim J-S, et al. DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Sci Rep. 2016;6(1):30620. https://doi.org/10.1038/srep30620
  29. 29. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152(5):1173-83. https://doi.org/10.1016/j.cell.2013.02.022
  30. 30. Jeong B-r, Jang J, Jin E. Genome engineering via gene editing technologies in microalgae. Bioresour Technol. 2023;373:128701. https://doi.org/10.1016/j.biortech.2023.128701
  31. 31. Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. 2016;34(2):184-91. https://doi.org/10.1038/nbt.3437
  32. 32. Gutiérrez S, Lauersen KJ. Gene delivery technologies with applications in microalgal genetic engineering. Biology. 2021;10(4):265. https://doi.org/10.3390/biology10040265
  33. 33. Kim J, Chang KS, Lee S, Jin E. Establishment of a genome editing tool using CRISPR-Cas9 in Chlorella vulgaris UTEX395. Int J Mol Sci. 2021;22(2):480. https://doi.org/10.3390/ijms22020480
  34. 34. Zhang S, Shen J, Li D, Cheng Y. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics. 2021;11(2):614. https://doi.org/10.7150/thno.47007
  35. 35. Nomura T, Inoue K, Uehara-Yamaguchi Y, Yamada K, Iwata O, Suzuki K, et al. Highly efficient transgene-free targeted mutagenesis and single-stranded oligodeoxynucleotide-mediated precise knock-in in the industrial microalga Euglena gracilis using Cas9 ribonucleoproteins. Plant Biotechnol J. 2019;17(11):2032. https://doi.org/10.1111/pbi.13174
  36. 36. Kang S, Jeon S, Kim S, Chang YK, Kim Y-C. Development of a pVEC peptide-based ribonucleoprotein (RNP) delivery system for genome editing using CRISPR/Cas9 in Chlamydomonas reinhardtii. Sci Rep. 2020;10(1):22158. https://doi.org/10.1038/s41598-020-78968-x
  37. 37. Le TT, Tran Q-G, Park S-B, Yoon HR, Choi D-Y, Cho D-H, et al. Efficient secretory production of recombinant proteins in microalgae using an exogenous signal peptide. Front Microbiol. 2025;16:1603204. https://doi.org/10.3389/fmicb.2025.1603204
  38. 38. Feng S, Xie X, Liu J, Li A, Wang Q, Guo D, et al. A potential paradigm in CRISPR/Cas systems delivery: at the crossroad of microalgal gene editing and algal-mediated nanoparticles. J Nanobiotechnol. 2023;21(1):370. https://doi.org/10.1186/s12951-023-02139-z
  39. 39. Kulkarni JA, Cullis PR, Van Der Meel R. Lipid nanoparticles enabling gene therapies: from concepts to clinical utility. Nucleic Acid Ther. 2018;28(3):146-57. https://doi.org/10.1089/nat.2018.0721
  40. 40. Liang J, Yan H, Wang X, Zhou Y, Gao X, Puligundla P, et al. Encapsulation of epigallocatechin gallate in zein/chitosan nanoparticles for controlled applications in food systems. Food Chem. 2017;231:19-24. https://doi.org/10.1016/j.foodchem.2017.02.106
  41. 41. Katas H, Alpar HO. Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release. 2006;115(2):216-25. https://doi.org/10.1016/j.jconrel.2006.07.021
  42. 42. Slowing II, Vivero-Escoto JL, Wu C-W, Lin VS-Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev. 2008;60(11):1278-88. https://doi.org/10.1016/j.addr.2008.03.012
  43. 43. Plank C, Anton M, Rudolph C, Rosenecker J, Krötz F. Enhancing and targeting nucleic acid delivery by magnetic force. Expert Opin Biol Ther. 2003;3(5):745-58. https://doi.org/10.1517/14712598.3.5.745
  44. 44. Kloxin AM, Kasko AM, Salinas CN, Anseth KS. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science. 2009;324(5923):59-63. https://doi.org/10.1126/science.1169494
  45. 45. Feng S, Hu L, Zhang Q, Zhang F, Du J, Liang G, et al. CRISPR/Cas technology promotes the various application of Dunaliella salina system. Appl Microbiol Biotechnol. 2020;104(20):8621-30. https://doi.org/10.1007/s00253-020-10892-6
  46. 46. Suttangkakul A, Sirikhachornkit A, Juntawong P, Puangtame W, Chomtong T, Srifa S, et al. Evaluation of strategies for improving the transgene expression in an oleaginous microalga Scenedesmus acutus. BMC Biotechnol. 2019;19(1):4. https://doi.org/10.1186/s12896-018-0497-z
  47. 47. Patel VK, Das A, Kumari R, Kajla S. Recent progress and challenges in CRISPR-Cas9 engineered algae and cyanobacteria. Algal Res. 2023;71:103068. https://doi.org/10.1016/j.algal.2023.103068
  48. 48. Vavitsas K, Kugler A, Satta A, Hatzinikolaou DG, Lindblad P, Fewer DP, et al. Doing synthetic biology with photosynthetic microorganisms. Physiol Plant. 2021;173(2):624-38. https://doi.org/10.1111/ppl.13455
  49. 49. Einhaus A, Krieger A, Köhne L, Rautengarten B, Jacobebbinghaus N, Saudhof M, et al. Genome editing of epigenetic transgene silencing in Chlamydomonas reinhardtii. Trends Biotechnol. 2025. https://doi.org/10.1016/j.tibtech.2025.04.019
  50. 50. Jagadevan S, Banerjee A, Banerjee C, Guria C, Tiwari R, Baweja M, et al. Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production. Biotechnol Biofuels. 2018;11(1):185. https://doi.org/10.1186/s13068-018-1181-1
  51. 51. Fajardo C, Carrasco-Reinado R, Escobar-Niño A, Fernández-Acero FJ. Microalgae: molecular biology, proteomics and applications. Prime Arch Mol Biol. 2020;1:45. https://doi.org/10.37247/pamb.2020.1.45
  52. 52. Kurita T, Iwai M, Moroi K, Okazaki K, Nomura S, Saito F, et al. Genome editing with removable TALEN vectors harboring a yeast centromere and autonomous replication sequence in oleaginous microalga. Sci Rep. 2022;12(1):2480. https://doi.org/10.1038/s41598-022-06495-y
  53. 53. Patel VK, Soni N, Prasad V, Sapre A, Dasgupta S, Bhadra B. CRISPR-Cas9 system for genome engineering of photosynthetic microalgae. Mol Biotechnol. 2019;61(8):541-61. https://doi.org/10.1007/s12033-019-00185-3
  54. 54. Naduthodi MIS, Barbosa MJ, van der Oost J. Progress of CRISPR-Cas based genome editing in photosynthetic microbes. Biotechnol J. 2018;13(9):1700591. https://doi.org/10.1002/biot.201700591
  55. 55. Lin JY, Lin WR, Ng IS. CRISPRa/i with Adaptive Single Guide Assisted Regulation DNA (ASGARD) mediated control of Chlorella sorokiniana to enhance lipid and protein production. Biotechnol J. 2022;17(10):2100514. https://doi.org/10.1002/biot.202100514
  56. 56. Kneip JS, Kniepkamp N, Jang J, Mortaro MG, Jin E, Kruse O, et al. CRISPR/Cas9-mediated knockout of the lycopene ε-cyclase for efficient astaxanthin production in the green microalga Chlamydomonas reinhardtii. Plants. 2024;13(10):1393. https://doi.org/10.3390/plants13101393
  57. 57. Song I, Kim J, Baek K, Choi Y, Shin B, Jin E. The generation of metabolic changes for the production of high-purity zeaxanthin mediated by CRISPR-Cas9 in Chlamydomonas reinhardtii. Microb Cell Fact. 2020;19(1):220. https://doi.org/10.1186/s12934-020-01480-4
  58. 58. Li C, Pan Y, Yin W, Liu J, Hu H. A key gene, violaxanthin de-epoxidase-like 1, enhances fucoxanthin accumulation in Phaeodactylum tricornutum. Biotechnol Biofuels Bioprod. 2024;17(1):49. https://doi.org/10.1186/s13068-024-02496-3
  59. 59. Tokunaga S, Morimoto D, Koyama T, Kubo Y, Shiroi M, Ohara K, et al. Enhanced lutein production in Chlamydomonas reinhardtii by overexpression of the lycopene epsilon cyclase gene. Appl Biochem Biotechnol. 2021;193(6):1967-78. https://doi.org/10.1007/s12010-021-03524-w
  60. 60. Mathieu-Rivet E, Mati-Baouche N, Walet-Balieu ML, Lerouge P, Bardor M. N- and O-glycosylation pathways in the microalgae polyphyletic group. Front Plant Sci. 2020;11:609993. https://doi.org/10.3389/fpls.2020.609993
  61. 61. Mathieu-Rivet E, Kiefer-Meyer MC, Vanier G, Ovide C, Burel C, Lerouge P, et al. Protein N-glycosylation in eukaryotic microalgae and its impact on the production of nuclear expressed biopharmaceuticals. Front Plant Sci. 2014;5:359. https://doi.org/10.3389/fpls.2014.00359
  62. 62. He L, Subramanian VR, Tang YJ. Experimental analysis and model-based optimization of microalgae growth in photo-bioreactors using flue gas. Biomass Bioenergy. 2012;41:131-8. https://doi.org/10.1016/j.biombioe.2012.02.025
  63. 63. Kumar G, Shekh A, Jakhu S, Sharma Y, Kapoor R, Sharma TR. Bioengineering of microalgae: recent advances, perspectives and regulatory challenges for industrial application. Front Bioeng Biotechnol. 2020;8:914. https://doi.org/10.3389/fbioe.2020.00914
  64. 64. Banerjee A, Ward V. Production of recombinant and therapeutic proteins in microalgae. Curr Opin Biotechnol. 2022;78:102784. https://doi.org/10.1016/j.copbio.2022.102784
  65. 65. Maeda Y, Yoshino T, Matsunaga T, Matsumoto M, Tanaka T. Marine microalgae for production of biofuels and chemicals. Curr Opin Biotechnol. 2018;50:111-20. https://doi.org/10.1016/j.copbio.2017.11.018
  66. 66. Ahmad Kamal AH, Mohd Hamidi NF, Zakaria MF, Ahmad A, Harun MR, Chandra Segaran T, et al. Genetically engineered microalgae for enhanced bioactive compounds. Discover Appl Sci. 2024;6(9):482. https://doi.org/10.1007/s42452-024-06116-5
  67. 67. Hao X, Chen W, Amato A, Jouhet J, Maréchal E, Moog D, et al. Multiplexed CRISPR/Cas9 editing of the long-chain acyl-CoA synthetase family in the diatom Phaeodactylum tricornutum reveals that mitochondrial ptACSL3 is involved in the synthesis of storage lipids. New Phytol. 2022;233(4):1797-812. https://doi.org/10.1111/nph.17911
  68. 68. Shin S-E, Lim J-M, Koh HG, Kim EK, Kang NK, Jeon S, et al. CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci Rep. 2016;6(1):27810. https://doi.org/10.1038/srep27810
  69. 69. Wang Q, Lu Y, Xin Y, Wei L, Huang S, Xu J. Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9. Plant J. 2016;88(6):1071-81. https://doi.org/10.1111/tpj.13307
  70. 70. Poliner E, Takeuchi T, Du Z-Y, Benning C, Farré EM. Nontransgenic marker-free gene disruption by an episomal CRISPR system in the oleaginous microalga Nannochloropsis oceanica CCMP1779. ACS Synth Biol. 2018;7(4):962-8. https://doi.org/10.1021/acssynbio.7b00362
  71. 71. Naduthodi MIS, Claassens NJ, D'Adamo S, van der Oost J, Barbosa MJ. Synthetic biology approaches to enhance microalgal productivity. Trends Biotechnol. 2021;39(10):1019-36. https://doi.org/10.1016/j.tibtech.2020.12.010
  72. 72. Kim Z-H, Kim K, Park H, Lee CS, Nam SW, Yim KJ, et al. Enhanced fatty acid productivity by Parachlorella sp., a freshwater microalga, via adaptive laboratory evolution under salt stress. Biotechnol Bioprocess Eng. 2021;26(2):223-31. https://doi.org/10.1007/s12257-020-0001-1
  73. 73. Liu H, Ding Y, Zhou Y, Jin W, Xie K, Chen L-L. CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Mol Plant. 2017;10(3):530-2. https://doi.org/10.1016/j.molp.2017.01.003
  74. 74. Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C, Stadler PF, et al. ViennaRNA package 2.0. Algorithms Mol Biol. 2011;6(1):26. https://doi.org/10.1186/1748-7188-6-26
  75. 75. Heinlein M. RNA tagging. Springer; 2020. https://doi.org/10.1007/978-1-0716-0712-1
  76. 76. Bae S, Park J, Kim J-S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics. 2014;30(10):1473-5. https://doi.org/10.1093/bioinformatics/btu048
  77. 77. Develtere W, Waegneer E, Debray K, De Saeger J, Van Glabeke S, Maere S, et al. SMAP design: a multiplex PCR amplicon and gRNA design tool to screen for natural and CRISPR-induced genetic variation. Nucleic Acids Res. 2023;51(7):e37. https://doi.org/10.1093/nar/gkad036
  78. 78. Doron L, Segal Na, Shapira M. Transgene expression in microalgae-from tools to applications. Front Plant Sci. 2016;7:505. https://doi.org/10.3389/fpls.2016.00505
  79. 79. Ghribi M, Nouemssi SB, Meddeb-Mouelhi F, Desgagné-Penix I. Genome editing by CRISPR-Cas: a game change in the genetic manipulation of Chlamydomonas. Life. 2020;10(11):295. https://doi.org/10.3390/life10110295
  80. 80. Ryu AJ. Engineering of Nannochloropsis salina for enhanced lipid biosynthesis by high-throughput screening and genome editing. 2020.
  81. 81. Lin W-R, Ng I-S. Development of CRISPR/Cas9 system in Chlorella vulgaris FSP-E to enhance lipid accumulation. Enzyme Microb Technol. 2020;133:109458. https://doi.org/10.1016/j.enzmictec.2019.109458
  82. 82. Daboussi F, Leduc S, Maréchal A, Dubois G, Guyot V, Perez-Michaut C, et al. Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nat Commun. 2014;5(1):3831. https://doi.org/10.1038/ncomms4831
  83. 83. Hao X, Chen W, Amato A, Jouhet J, Maréchal E, Moog D, et al. Multiplexed CRISPR/Cas9 editing of the long-chain acyl-CoA synthetase family in the diatom Phaeodactylum tricornutum reveals that mitochondrial ptACSL3 is involved in the synthesis of storage lipids. New Phytol. 2022;233(4):1797-812. https://doi.org/10.1111/nph.17911

Downloads

Download data is not yet available.