Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 4 (2025)

Ethnobotany of coconut: A review on its traditional, cultural and economic significance

DOI
https://doi.org/10.14719/pst.11221
Submitted
10 August 2025
Published
13-11-2025 — Updated on 27-11-2025
Versions

Abstract

Cocos nucifera L. (2n = 2x = 32), the only species within the genus Cocos, is a diploid perennial oilseed plant belonging to the Arecaceae family, earning its’ title as “Kalpavriksha or Tree of Heaven”. Coconut palm holds enormous cultural, traditional, and economic significance across tropical and subtropical regions.  Originating from the land fragments of the ancient Gondwana landmass, coconut has undergone wide geographic dispersal and ecological adaptation, thriving along coastal areas from Pacific regions. Despite its significance, ethnobotanical research on coconut remains limited and coconut cultivation faces increasing threats from rapid urbanization. In India, coconut is deeply integrated into indigenous health systems, used for its ethnomedicinal properties including analgesic, anti-inflammatory, cardioprotective, antidiabetic, antioxidant, antibacterial and immunomodulation. Coconut contains high levels of fatty acids such as caprylic acid (9%), capric acid (8%), caproic acid (5%) and myristic acid (20%) which enhances its potential in nutritional therapy and functional food development. This review integrates phytochemical, pharmacological and ethnobotanical evidence, emphasizing coconut’s potential in food, medicine, and sustainable development.

Cocos nucifera L. (2n = 2x = 32), the only species within the genus Cocos, is a diploid perennial oilseed plant belonging to the Arecaceae family, earning its title as “Kalpavriksha” or “Tree of Heaven”. Despite its widespread cultural, traditional and economic importance, ethnobotanical research remains limited and cultivation faces increasing threats from urbanization. Originating from the land fragments of the ancient Gondwana landmass, coconut has undergone wide geographic dispersal and ecological adaptation, thriving particularly along the coastal areas of the Pacific and Indian Ocean regions. In India, coconut is deeply integrated into indigenous health systems, used for its ethnomedicinal properties including analgesic, anti-inflammatory, cardioprotective, antidiabetic, antioxidant, antibacterial and immunomodulatory activities. It is rich in fatty acids such as caprylic, capric, caproic and myristic acids, enhancing its potential in nutritional therapy and functional food development. This review integrates phytochemical, pharmacological and ethnobotanical evidence, emphasizing coconut’s potential in food, medicine and sustainable development. 

References

  1. 1. Ribeiro FE, Baudouin L, Lebrun P, Chaves LJ, Brondani C, Costa EFN, et al. Genetic diversity in Brazilian tall coconut populations by microsatellite markers. Crop Breed Appl Biotechnol. 2013;13:356-62. https://doi.org/10.1590/S1984-70332013000400006
  2. 2. Ahuja SC, Ahuja U, Ahuja S. Coconut-history, uses and folklore. Asian Agri-History. 2014;18(3).
  3. 3. Daa-Kpode UA, Djedatin G, Aide ES, Salako K, Valère E, Baba-Moussa F, et al. Ethnobotanical study of the coconut palm in the coastal zone of Benin. Int J Biodivers Conserv. 2021;13(3):152-64. https://doi.org/10.5897/IJBC2021.1503
  4. 4. Alouw JC, Chinthaka AHN, Pirmansah A, Sintoro O, Ilmawan B, Hosang KD, et al. The economic, social and environmental importance of coconut. In: Science-based pest management for a sustainable and resilient coconut sector. Springer; 2025. p. 3-13. https://doi.org/10.1007/978-3-031-84266-5_1
  5. 5. Salum U, Foale M, Biddle J, Bazrafshan A, Adkins S. Towards the sustainability of the “tree of life”: an introduction. In: Coconut biotechnology: towards the sustainability of the ‘tree of life’. Springer; 2020. p. 1-15. https://doi.org/10.1007/978-3-030-44988-9_1
  6. 6. Parmar PT, Singh AK, Borad SG. Coconut (Cocos nucifera). In: Oilseeds: health attributes and food applications. Springer; 2020. p. 163-89. https://doi.org/10.1007/978-981-15-4194-0_7
  7. 7. Henrietta HM, Kalaiyarasi K, Raj AS. Coconut tree (Cocos nucifera) products: a review of global cultivation and its benefits. J Sustain Environ Manage. 2022;1(2):257-64. https://doi.org/10.3126/josem.v1i2.45377
  8. 8. Devi M, Ghatani K. The use of coconut in rituals and food preparations in India: a review. J Ethn Foods. 2022;9(1):37. https://doi.org/10.1186/s42779-022-00150-7
  9. 9. Dwivedi DV. Cultural and scientific evaluation of Nārikela (coconut) in Indian perspective. Jahnavi Sanskrit E-Journal. 2021;11(44):58-67.
  10. 10. Kumar BM, Kunhamu T. Nature-based solutions in agriculture: a review of the coconut (Cocos nucifera L.)-based farming systems in Kerala, “the land of coconut trees”. Nature-Based Solutions. 2022;2:100012. https://doi.org/10.1016/j.nbsj.2022.100012
  11. 11. Teulat B, Aldam C, Trehin R, Lebrun P, Barker JH, Arnold G, et al. An analysis of genetic diversity in coconut (Cocos nucifera) populations from across the geographic range using sequence-tagged microsatellites (SSRs) and AFLPs. Theor Appl Genet. 2000;100(5):764-71. https://doi.org/10.1007/s001220051350
  12. 12. Miyaura R, Ohno T, Maenaka H, Sumiartha K, Yamaguchi H. A particular silhouette of human-influenced coconut trees in Hindu Bali, Indonesia: an ethnobotanical field note. Ethnobotany Res Appl. 2015;14:405-21. https://doi.org/10.17348/era.14.0.405-421
  13. 13. Nayar NM. The coconut: phylogeny, origins and spread. Academic Press; 2016. https://doi.org/10.1016/B978-0-12-809778-6.00005-X
  14. 14. Lew C. Tracing the origin of the coconut (Cocos nucifera L.). Paul Gepts Plant Sci Dep. 2019;785.
  15. 15. Gunn BF, Baudouin L, Olsen KM. Independent origins of cultivated coconut (Cocos nucifera L.) in the old world tropics. PLoS One. 2011;6(6):e21143. https://doi.org/10.1371/journal.pone.0021143
  16. 16. Ritchie A, Greenwood R, Randles S. The kinetics of the uranium-oxygen-water vapour reaction between 40 and 100 °C. J Nucl Mater. 1986;139(2):121-36. https://doi.org/10.1016/0022-3115(86)90030-9
  17. 17. Harries H. The evolution, dissemination and classification of Cocos nucifera L. Bot Rev. 1978;44(3):265-319. https://doi.org/10.1007/BF02957852
  18. 18. Harries HC, Clement CR. Long-distance dispersal of the coconut palm by migration within the coral atoll ecosystem. Ann Bot. 2014;113(4):565-70. https://doi.org/10.1093/aob/mct293
  19. 19. Ingicco T, van den Bergh GD, Jago-on C, Bahain J-J, Chacón MG, Amano N, et al. Earliest known hominin activity in the Philippines by 709 thousand years ago. Nature. 2018;557(7704):233-7. https://doi.org/10.1038/s41586-018-0072-8
  20. 20. Nguyen QT, Bandupriya HD, López-Villalobos A, Sisunandar S, Foale M, Adkins SW. Tissue culture and associated biotechnological interventions for the improvement of coconut (Cocos nucifera L.): a review. Planta. 2015;242(5):1059-76. https://doi.org/10.1007/s00425-015-2362-9
  21. 21. DebMandal M, Mandal S. Coconut (Cocos nucifera L.: Arecaceae): in health promotion and disease prevention. Asian Pac J Trop Med. 2011;4(3):241-7. https://doi.org/10.1016/S1995-7645(11)60078-3
  22. 22. Sujithra M, Rajkumar M, Pai S, Selvaraj K. Prospects and advances in the management of coconut wood borers. In: Science of wood degradation and its protection. Springer; 2022. p. 227-56. https://doi.org/10.1007/978-981-16-8797-6_7
  23. 23. Akinpelu DA, Alayande KA, Aiyegoro OA, Akinpelu OF, Okoh AI. Probable mechanisms of biocidal action of Cocos nucifera husk extract and fractions on bacteria isolates. BMC Complement Altern Med. 2015;15(1):116. https://doi.org/10.1186/s12906-015-0634-3
  24. 24. Pal D, Sarkar A, Gain S, Jana S, Mandal S. CNS depressant activities of roots of Cocos nucifera in mice. Acta Pol Pharm. 2011;68(2):249-54.
  25. 25. Lima E, Sousa C, Meneses L, Ximenes N, Santos Júnior M, Vasconcelos G, et al. Cocos nucifera (L.) (Arecaceae): a phytochemical and pharmacological review. Braz J Med Biol Res. 2015;48:953-64. https://doi.org/10.1590/1414-431x20154773
  26. 26. Loki AL, Rajamohan T. Hepatoprotective and antioxidant effect of tender coconut water on carbon tetrachloride induced liver injury in rats. Indian J Biochem Biophys. 2003;40(5):354-7.
  27. 27. Nevin K, Rajamohan T. Virgin coconut oil supplemented diet increases the antioxidant status in rats. Food Chem. 2006;99(2):260-6. https://doi.org/10.1016/j.foodchem.2005.06.056
  28. 28. Tuyekar SN, Tawade BS, Singh KS, Wagh VS, Vidhate PK, Yevale RP, et al. An overview on coconut water as a multipurpose nutrition. Int J Pharm Sci Rev Res. 2021;68(2):63-70. https://doi.org/10.47583/ijpsrr.2021.v68i02.010
  29. 29. Yong JW, Ge L, Ng YF, Tan SN. The chemical composition and biological properties of coconut (Cocos nucifera L.) water. Molecules. 2009;14(12):5144-64. https://doi.org/10.3390/molecules14125144
  30. 30. Enig MG, editor. Coconut: in support of good health in the 21st century. 36th Meeting of APCC; 1999.
  31. 31. Sandhya V, Rajamohan T. Beneficial effects of coconut water feeding on lipid metabolism in cholesterol-fed rats. J Med Food. 2006;9(3):400-7. https://doi.org/10.1089/jmf.2006.9.400
  32. 32. Hovorková P, Laloučková K, Skřivanová E. Determination of in vitro antibacterial activity of plant oils containing medium-chain fatty acids against gram-positive pathogenic and gut commensal bacteria. Czech J Anim Sci. 2018;63(3). https://doi.org/10.17221/70/2017-CJAS
  33. 33. Jackman JA, Boyd RD, Elrod CC. Medium-chain fatty acids and monoglycerides as feed additives for pig production: towards gut health improvement and feed pathogen mitigation. J Anim Sci Biotechnol. 2020;11(1):44. https://doi.org/10.1186/s40104-020-00446-1
  34. 34. Verma V, Bhardwaj A, Rathi S, Raja R. A potential antimicrobial agent from Cocos nucifera mesocarp extract; development of a new generation antibiotic. ISCA J Biol Sci. 2012;1(2):48-54.
  35. 35. Vigila A, Baskaran X. Immunomodulatory effect of coconut protein on cyclophosphamide induced immune-suppressed Swiss Albino mice. Ethnobot Leaflets. 2008;(12):1206-12.
  36. 36. Widianingrum DC, Noviandi CT, Salasia SIO. Antibacterial and immune modulator activities of virgin coconut oil (VCO) against Staphylococcus aureus. Heliyon. 2019;5(10):e02612. https://doi.org/10.1016/j.heliyon.2019.e02612
  37. 37. Salil G, Nevin K, Rajamohan T. Arginine-rich coconut kernel protein modulates diabetes in alloxan-treated rats. Chem Biol Interact. 2011;189(1-2):107-11. https://doi.org/10.1016/j.cbi.2010.10.015
  38. 38. Costa C, Bevilaqua C, Morais S, Camurça-Vasconcelos A, Maciel M, Braga R, et al. Anthelmintic activity of Cocos nucifera L. on intestinal nematodes of mice. Res Vet Sci. 2010;88(1):101-3. https://doi.org/10.1016/j.rvsc.2009.05.008
  39. 39. Mendonça-Filho RR, Rodrigues IA, Alviano DS, Santos AL, Soares RM, Alviano CS, et al. Leishmanicidal activity of polyphenolic-rich extract from husk fiber of Cocos nucifera Linn. (Palmae). Res Microbiol. 2004;155(3):136-43. https://doi.org/10.1016/j.resmic.2003.12.001
  40. 40. Solangi AH, Iqbal MZ. Chemical composition of meat (kernel) and nut water of major coconut (Cocos nucifera L.) cultivars at coastal area of Pakistan. Pak J Bot. 2011;43(1):357-63.
  41. 41. Arlee R, Suanphairoch S, Pakdeechanuan P. Differences in chemical components and antioxidant-related substances in virgin coconut oil from coconut hybrids and their parents. Int Food Res J. 2013;20(5):2103.
  42. 42. Akpro L, Gbogouri G, Konan B, Issali A, Konan K, Brou K, et al. Phytochemical compounds, antioxidant activity and non-enzymatic browning of sugars extracted from the water of immature coconut (Cocos nucifera L.). Sci Afr. 2019;6:e00123. https://doi.org/10.1016/j.sciaf.2019.e00123
  43. 43. Mu Z, Tran B-M, Xu H, Yang Z, Qamar UZ, Wang X, et al. Exploring the potential application of coconut water in healthcare and biotechnology: a review. Beverage Plant Res. 2024;4(1). https://doi.org/10.48130/bpr-0024-0009
  44. 44. Phonphoem W, Sinthuvanich C, Aramrak A, Sirichiewsakul S, Arikit S, Yokthongwattana C. Nutritional profiles, phytochemical analysis, antioxidant activity and DNA damage protection of makapuno derived from Thai aromatic coconut. Foods. 2022;11(23):3912.
  45. 45. Kannaian UPN, Edwin JB, Rajagopal V, Shankar SN, Srinivasan B. Phytochemical composition and antioxidant activity of coconut cotyledon. Heliyon. 2020;6(2). https://doi.org/10.1016/j.heliyon.2020.e03411
  46. 46. Uy IA, Dapar MLG, Aranas AT, Mindo RAR, Manting M, Torres MAJ, et al. Qualitative assessment of the antimicrobial, antioxidant, phytochemical properties of the ethanolic extracts of the roots of Cocos nucifera L. Pharmacophore. 2019;10(2):63-75.
  47. 47. Sosiowati I. Coconut and its related words in Hindu society: an ecolinguistic approach. Int J Res Soc Sci. 2016;6(3):320-33.
  48. 48. Rival L. Trees, from symbols of life and regeneration to political artefacts. In: The social life of trees. Routledge; 2021. p. 1-36. https://doi.org/10.4324/9781003136040-1
  49. 49. Shimizu M. Protecting peace and the ecological environment: from the story of the Coconut Religion in Ben Tre. VMOST J Soc Sci Humanit. 2025;67(1):116-28. https://doi.org/10.31276/VMOSTJOSSH.2024.0048
  50. 50. Caillon S. Ethnobotanique du cocotier (Cocos nucifera L.) sur l'île de Vanua Lava (Vanuatu). J Soc Océanistes. 2011;133(2):333-52. https://doi.org/10.4000/jso.6533
  51. 51. Giambelli RA. The coconut, the body and the human being: metaphors of life and growth in Nusa Penida and Bali. In: The social life of trees. Routledge; 2021. p. 133-57. https://doi.org/10.4324/9781003136040-8
  52. 52. Bourdeix R, Baudouin L, Bambridge T, Joly H, Planes S, George M, editors. Dynamics and conservation of the coconut palm Cocos nucifera L. in the Pacific region: towards a new conservation approach. 11th Pacific Science Inter-Congress; 2009.
  53. 53. Vijayakumar V, Shankar NR, Mavathur R, Mooventhan A, Anju S, Manjunath N. Diet enriched with fresh coconut decreases blood glucose levels and body weight in normal adults. J Complement Integr Med. 2018;15(3). https://doi.org/10.1515/jcim-2017-0097
  54. 54. Pavan KG, Lakshmi N, Deena C, Bhavani B, Rajendra KP. Copra oil: chemistry, production. An extensive review on Indian specifications and functional aspects. Ukr J Food Sci. 2018;6(1):32-45. https://doi.org/10.24263/2310-1008-2018-6-1-6
  55. 55. Babu AS, Veluswamy SK, Arena R, Guazzi M, Lavie CJ. Virgin coconut oil and its potential cardioprotective effects. Postgrad Med. 2014;126(7):76-83. https://doi.org/10.3810/pgm.2014.11.2835
  56. 56. Ramesh S, Pandiselvam R, Thushara R, Manikantan M, Hebbar K, Beegum S, et al. Engineering intervention for production of virgin coconut oil by hot process and multivariate analysis of quality attributes of virgin coconut oil extracted by various methods. J Food Process Eng. 2020;43(6):e13395. https://doi.org/10.1111/jfpe.13395
  57. 57. Villarino BJ, Dy LM, Lizada MCC. Descriptive sensory evaluation of virgin coconut oil and refined, bleached and deodorized coconut oil. LWT Food Sci Technol. 2007;40(2):193-9. https://doi.org/10.1016/j.lwt.2005.11.007
  58. 58. Bosco S, Singh V. Snow ball tender nut: a nutritive drink and snack. 2005.
  59. 59. Chinnamma M, Bhasker S, Binitha Hari M, Sreekumar D, Madhav H. Coconut neera: a vital health beverage from coconut palms-harvesting, processing and quality analysis. Beverages. 2019;5(1):22. https://doi.org/10.3390/beverages5010022
  60. 60. Obaroakpo J, Iwanegbe I, Ojokoh A. Functional and sensory evaluation of biscuits produced from wheat, defatted soybean and coconut flour. Curr J Appl Sci Technol. 2017;23(6):1-7. https://doi.org/10.9734/CJAST/2017/30836
  61. 61. Kaur K, Chhikara N, Sharma P, Garg M, Panghal A. Coconut meal: nutraceutical importance and food industry application. Food Proc Technol. 2019;7(2):419-27. https://doi.org/10.21603/2308-4057-2019-2-419-427
  62. 62. Gonsalves J. Economic botany and ethnobotany. Mittal Publications; 2010.
  63. 63. Jayasekhar S, Chandran K, Thamban C, Muralidharan K. Coconut sector in India experiencing a new regime of trade and policy environment: a critical analysis. J Plant Crops. 2019;47(1):48-54. https://doi.org/10.25081/jpc.2024.v52.i1.9170
  64. 64. Jayasekhar S, Jacob N. Coconut sector in India at the crossroads: a brief narrative. Indian Coconut J. 2021;63(12):12-6.
  65. 65. Sabara Z, Anwar A, Yani S, Prianto K, Junaidi R, Umam R, et al. Activated carbon and coconut coir with the incorporation of ABR system as greywater filter: implications for wastewater treatment. Sustainability. 2022;14(2):1026. https://doi.org/10.3390/su14021026
  66. 66. Dhanya G, Vivek P, Ashish G. Phytochemical analysis of coconut shell (Cocos nucifera Linn.) using gas chromatography–mass spectrometry (GC-MS). J Pharmacogn Phytochem. 2018;7:384-6.
  67. 67. Obidoa O, Joshua PE, Eze NJ. Phytochemical analysis of Cocos nucifera L. J Pharm Res. 2010;3(2):280-6.
  68. 68. Afunwa RA, Okafor CM, Igboko CA, Chukwunonso M, Nwofia FAG, Mgbodile FC. Phytochemical and antimicrobial properties of coconut water (Cocos nucifera L.) against bacteria isolates from students’ urine samples in a university community. J Clin Med Res. 2025;2(1):10.
  69. 69. Kumar Ghosh P, Bhattacharjee P, Poddar-Sarkar M. Reduction of lauric acid in coconut copra by supercritical carbon dioxide extraction: process optimization and design of functional cookies using lauric acid–lean copra meal. J Food Process Eng. 2017;40(3):e12501. https://doi.org/10.1111/jfpe.12501
  70. 70. Temikotan T, Daniels A, Adeoye A. Phytochemical properties and antibacterial analysis of aqueous and alcoholic extracts of coconut husk against selected bacteria. Funksec Here. 2021;3(2):95-103.
  71. 71. Pandiselvam R, Jacob A, Manikantan M. Coconut-based food products: repertoire and biochemical features. In: Coconut-based nutrition and nutraceutical perspectives. Springer; 2024. p. 203-20. https://doi.org/10.1007/978-981-97-3976-9_10
  72. 72. Dayrit FM, Nguyen Q. Improving the value of the coconut with biotechnology. In: Coconut biotechnology: towards the sustainability of the ‘tree of life’. Springer; 2020. p. 29-50. https://doi.org/10.1007/978-3-030-44988-9_3

Downloads

Download data is not yet available.