Review Articles
Early Access
Microbial fuel cells: A sustainable approach for environmental remediation and green energy generation
Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641 003, India
Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641 003, India
Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore 641 003, India
Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore 641 003, India
Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641 003, India
Centre of Agricultural Nano Technology, Tamil Nadu Agricultural University, Coimbatore 641 003, India
Abstract
Microbial fuel cells (MFCs) are an innovative, eco-friendly bioelectrochemical technology that simultaneously treats wastewater and generates renewable electricity by harnessing the metabolic activity of electroactive microbes. This review surveys advancements in MFC research from 2015 to 2025, highlighting key performance metrics, including power densities that typically range from 100 to 2000 mW/m² and chemical oxygen demand (COD) removal efficiencies between 60 % and 90 % across various organic substrates. MFCs generally consist of an anode chamber, where electrogenic bacteria oxidize organic matter, a cathode chamber that facilitates oxygen reduction and a proton exchange membrane (PEM) separating these compartments. Both pure cultures and mixed microbial communities play vital roles, with electrogenic microbes such as Geobacter sulfurreducens, Shewanella oneidensis and Pseudomonas aeruginosa being particularly important for electricity production. The technology effectively degrades a wide range of pollutants, including heavy metals (HMs), dyes, pharmaceuticals and nutrients, while utilizing waste streams such as domestic wastewater, industrial effluent, agricultural runoff and sludge to generate bioelectricity. Recent advances focus on improving electrode materials, exploring membrane alternatives and optimizing reactor designs to enhance electron transfer efficiency, increase power output and reduce costs. Despite challenges such as low power density, technical complexity, high material costs and scalability limitations, MFCs align with global sustainability goals, particularly the United Nations Sustainable Development Goals (SDGs) 6 and 7, offering potential for decentralized wastewater treatment and clean energy generation. Future research should prioritize interdisciplinary collaboration, policy support and industry engagement to bridge current gaps and advance the commercial deployment of MFC technology.
References
- 1. Pathak P. Renewable energy as a sustainable alternative: a way forward. In: Alternative energy resources: the way to a sustainable modern society. Cham: Springer. 2020. p. 317–21. https://doi.org/10.1007/698_2020_634
- 2. Soares RB, Memelli MS, Roque RP, Gonçalves RF. Comparative analysis of the energy consumption of different wastewater treatment plants. Int J Archit Arts Appl. 2017;3(6):79–86. https://doi.org/10.11648/j.ijaaa.20170306.11
- 3. Nowotny J, Dodson J, Fiechter S, Gür TM, Kennedy B, Macyk W, et al. Towards global sustainability: education on environmentally clean energy technologies. Renew Sustain Energy Rev. 2018;81:2541–51. https://doi.org/10.1016/j.rser.2017.06.060
- 4. Song H-L, Zhu Y, Li J. Electron transfer mechanisms, characteristics and applications of biological cathode microbial fuel cells: a mini-review. Arab J Chem. 2019;12(8):2236–43. https://doi.org/10.1016/j.arabjc.2015.01.008
- 5. Adepitan OL, Alabi OO, Gbadeyan OJ, Deenadayalu N. Bioelectrochemical systems for waste treatment and valorization: a review of applications and benefits. Biofuels Bioprod Biorefin. 2025. https://doi.org/10.1002/bbb.70035
- 6. Vishwanathan A. Microbial fuel cells: a comprehensive review for beginners. 3 Biotech. 2021;11(5):248. https://doi.org/10.1007/s13205-021-02802-y
- 7. Thapa BS, Pandit S, Patwardhan SB, Tripathi S, Mathuriya AS, Gupta PK, et al. Application of microbial fuel cell for pharmaceutical wastewater treatment: an overview and future perspectives. Sustainability. 2022;14(14):8379. https://doi.org/10.3390/su14148379
- 8. Elshobary ME, Zabed HM, Yun J, Zhang G, Qi X. Recent insights into microalgae-assisted microbial fuel cells for generating sustainable bioelectricity. Int J Hydrogen Energy. 2021;46(4):3135–59. https://doi.org/10.1016/j.ijhydene.2020.06.251
- 9. Shamshad J, Rehman RU. Innovative approaches to sustainable wastewater treatment: a comprehensive exploration of conventional and emerging technologies. Environ Sci Adv. 2025. https://doi.org/10.1039/D4VA00136B
- 10. Chandrasekhar K, Kadier A, Kumar G, Nastro RA, Jeevitha V. Challenges in microbial fuel cell and future scope. In: Das D, editor. Microbial fuel cell. Cham: Springer. 2018. p. 483–499. https://doi.org/10.1007/978-3-319-66793-5_25
- 11. Rahim ZA, Iqbal MS, Bakar NA. Exploring innovations and trends in microbial fuel cells using TRIZ patent literature review. J Chem Technol Biotechnol. 2025. https://doi.org/10.1002/jctb.7895
- 12. Shajid SR, Mourshed M, Kibria MG, Shabani B. The potential of microbial fuel cells as a dual solution for sustainable wastewater treatment and energy generation: a case study. Energies. 2025;18(14):3725. https://doi.org/10.3390/en18143725
- 13. Prasad J, Tripathi RK. Review on improving microbial fuel cell power management systems for consumer applications. Energy Rep. 2022;8:10418–433. https://doi.org/10.1016/j.egyr.2022.08.192
- 14. Roy H, Rahman TU, Tasnim N, Arju J, Rafid MM, Islam MR, et al. Microbial fuel cell construction features and application for sustainable wastewater treatment. Membranes. 2023;13(5):490. https://doi.org/10.3390/membranes13050490
- 15. Aghababaie M, Farhadian M, Jeihanipour A, Biria D. Effective factors on the performance of microbial fuel cells in wastewater treatment: a review. Environ Technol Rev. 2015;4(1):71–89. https://doi.org/10.1080/09593330.2015.1077896
- 16. Priya A, Subha C, Kumar PS, Suresh R, Rajendran S, Vasseghian Y, et al. Advancements on sustainable microbial fuel cells and their future prospects: a review. Environ Res. 2022;210:112930. https://doi.org/10.1016/j.envres.2022.112930
- 17. Stoll ZA, Dolfing J, Ren ZJ, Xu P. Interplay of anode, cathode and current in microbial fuel cells: implications for wastewater treatment. Energy Technol. 2016;4(5):583–92. https://doi.org/10.1002/ente.201500397
- 18. Zhang Q, Liu L. A microbial fuel cell system with manganese dioxide/titanium dioxide/graphitic carbon nitride-coated granular activated carbon cathode successfully treated organic acids industrial wastewater with residual nitric acid. Bioresour Technol. 2020;304:122992. https://doi.org/10.1016/j.biortech.2020.122992
- 19. Khilari S, Pradhan D. Role of cathode catalyst in microbial fuel cell. In: Microbial fuel cell: a bioelectrochemical system that converts waste to watts. Cham: Springer. 2017. p. 141–163. https://doi.org/10.1007/978-3-319-66793-5_8
- 20. Kesarwani S, Panwar D, Mal J, Pradhan N, Rani R. Constructed wetland coupled microbial fuel cell: a clean technology for sustainable treatment of wastewater and bioelectricity generation. Fermentation. 2022;9(1):6. https://doi.org/10.3390/fermentation9010006
- 21. Abd-Elrahman NK, Al-Harbi N, Basfer NM, Al-Hadeethi Y, Umar A, Akbar S. Applications of nanomaterials in microbial fuel cells: a review. Molecules. 2022;27(21):7483. https://doi.org/10.3390/molecules27217483
- 22. Naha A, Debroy R, Sharma D, Shah MP, Nath S. Microbial fuel cell: a state-of-the-art and revolutionizing technology for efficient energy recovery. Clean Circ Bioecon. 2023;5:100050. https://doi.org/10.1016/j.clcb.2023.100050
- 23. Roy A, Bharadvaja N. Removal of toxic pollutants using microbial fuel cells. In: Removal of toxic pollutants through microbiological and tertiary treatment. Amsterdam: Elsevier. 2020. p. 153–177. https://doi.org/10.1016/B978-0-12-821014-7.00005-8
- 24. Wang H, Park J-D, Ren ZJ. Practical energy harvesting for microbial fuel cells: a review. Environ Sci Technol. 2015;49(6):3267–77. https://doi.org/10.1021/es5047765
- 25. Pankratova G, Hederstedt L, Gorton L. Extracellular electron transfer features of Gram-positive bacteria. Anal Chim Acta. 2019;1076:32–47. https://doi.org/10.1016/j.aca.2019.05.007
- 26. Wang R, Li H, Sun J, Zhang L, Jiao J, Wang Q, et al. Nanomaterials facilitating microbial extracellular electron transfer at interfaces. Adv Mater. 2021;33(6):2004051. https://doi.org/10.1002/adma.202004051
- 27. Zhang J, You Z, Liu D, Tang R, Zhao C, Cao Y, et al. Conductive proteins-based extracellular electron transfer of electroactive microorganisms. Quant Biol. 2023;11(4):405–420. https://doi.org/10.1002/qub2.24
- 28. Jayabal R, Sivanraju R. Wastewater treatment for energy conservation and zero carbon footprint: a review. Energy Sci Eng. 2025. https://doi.org/10.1002/ese3.70142
- 29. Gude VG. Integrating bioelectrochemical systems for sustainable wastewater treatment. Clean Technol Environ Policy. 2018;20(5):911–24. https://doi.org/10.1007/s10098-018-1536-0
- 30. Unuofin JO, Iwarere SA, Daramola MO. Embracing the future of circular bio-enabled economy: unveiling the prospects of microbial fuel cells in achieving true sustainable energy. Environ Sci Pollut Res Int. 2023;30(39):90547–573. https://doi.org/10.1007/s11356-023-28717-0
- 31. Bajracharya S, Sharma M, Mohanakrishna G, Benneton XD, Strik DP, Sarma PM, et al. An overview on emerging bioelectrochemical systems (BESs): technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond. Renew Energy. 2016;98:153–170. https://doi.org/10.1016/j.renene.2016.03.002
- 32. Yaqoob AA, Mohamad Ibrahim MN, Rafatullah M, Chua YS, Ahmad A, Umar K. Recent advances in anodes for microbial fuel cells: an overview. Materials. 2020;13(9):2078. https://doi.org/10.3390/ma13092078
- 33. Kardi SN, Ibrahim N, Rashid NAA, Darzi GN. Investigating effect of proton-exchange membrane on new air-cathode single-chamber microbial fuel cell configuration for bioenergy recovery from Azorubine dye degradation. Environ Sci Pollut Res Int. 2019;26(21):21201–215. https://doi.org/10.1007/s11356-019-05204-z
- 34. Fudge T. Development of a biological electrochemical system for decentralised wastewater treatment and energy production in remote and under-served regions [thesis]. London: Brunel University London. 2020.
- 35. Verma M, Mishra V. Bioelectricity generation by microbial degradation of banana peel waste biomass in a dual-chamber Saccharomyces cerevisiae-based microbial fuel cell. Biomass Bioenergy. 2023;168:106677. https://doi.org/10.1016/j.biombioe.2022.106677
- 36. Yazdi H, Alzate-Gaviria L, Ren ZJ. Pluggable microbial fuel cell stacks for septic wastewater treatment and electricity production. Bioresour Technol. 2015;180:258–63. https://doi.org/10.1016/j.biortech.2014.12.100
- 37. Das D. Microbial fuel cell. Cham: Springer-Verlag GmbH. 2018. https://doi.org/10.1007/978-3-319-66793-5
- 38. Wu S, Li H, Zhou X, Liang P, Zhang X, Jiang Y, et al. A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment. Water Res. 2016;98:396–403. https://doi.org/10.1016/j.watres.2016.04.043
- 39. Zhou S. Working principle and application of microbial fuel cell. Innov Sci Technol. 2022;1(3):51–55. https://doi.org/10.56397/IST.2022.10.05
- 40. Kumar R, Singh L, Wahid ZA, Din MFM. Exoelectrogens in microbial fuel cells toward bioelectricity generation: a review. Int J Energy Res. 2015;39(8):1048–67. https://doi.org/10.1002/er.3305
- 41. Slate AJ. Optimisation of a Pseudomonas aeruginosa microbial fuel cell coupled with additive manufacturing of graphene electrodes to enhance power outputs [thesis]. Manchester: Manchester Metropolitan University. 2019.
- 42. Zhu D, Adebisi WA, Ahmad F, Sethupathy S, Danso B, Sun J. Recent development of extremophilic bacteria and their application in biorefinery. Front Bioeng Biotechnol. 2020;8:483. https://doi.org/10.3389/fbioe.2020.00483
- 43. Gallo G, Aulitto M. Advances in extremophile research: biotechnological applications through isolation and identification techniques. Life. 2024;14(9):1205. https://doi.org/10.3390/life14091205
- 44. Dakal TC, Singh N, Kaur A, Dhillon PK, Bhatankar J, Meena R, et al. New horizons in microbial fuel cell technology: applications, challenges and prospects. Biotechnol Biofuels Bioprod. 2025;18(1):79. https://doi.org/10.1186/s13068-025-02649-y
- 45. Ali HE, Hemdan BA, El-Naggar ME, El-Liethy MA, Jadhav DA, El-Hendawy HH, et al. Harnessing the power of microbial fuel cells as pioneering green technology: advancing sustainable energy and wastewater treatment through innovative nanotechnology. Bioprocess Biosyst Eng. 2025;48(3):343–66. https://doi.org/10.1007/s00449-024-03115-z
- 46. Commault AS, Lear G, Weld RJ. Maintenance of Geobacter-dominated biofilms in microbial fuel cells treating synthetic wastewater. Bioelectrochemistry. 2015;106:150–58. https://doi.org/10.1016/j.bioelechem.2015.04.011
- 47. Zou L, Wu X, Huang Y, Ni H, Long ZE. Promoting Shewanella bidirectional extracellular electron transfer for bioelectrocatalysis by electropolymerized riboflavin interface on carbon electrode. Front Microbiol. 2019;9:3293. https://doi.org/10.3389/fmicb.2018.03293
- 48. Wu W, Hong H, Lin J, Yang D. Antimicrobial responses to bacterial metabolic activity and biofilm formation studied using microbial fuel cell-based biosensors. Biosensors. 2024;14(12):606. https://doi.org/10.3390/bios14120606
- 49. Vasyliv OM, Maslovska OD, Ferensovych YP, Bilyy OI, Hnatush SO. Interconnection between tricarboxylic acid cycle and energy generation in microbial fuel cell performed by Desulfuromonas acetoxidans IMV B-7384. In: Energy harvesting and storage: materials, devices, and applications VI. Proc SPIE; 2015. 94930J. https://doi.org/10.1117/12.2176222
- 50. Braga JK, Stancari RA, Motteran F, Malavazi I, Varesche MBA. Metals addition for enhanced hydrogen, acetic and butyric acids production from cellulosic substrates by Clostridium butyricum. Biomass Bioenergy. 2021;150:105679. https://doi.org/10.1016/j.biombioe.2020.105679
- 51. Jothinathan D, Wilson RT. Production of bioelectricity in MFC by Pseudomonas fragi DRR-2 (psychrophilic) isolated from goat rumen fluid. Energy Sources Part A Recover Util Environ Eff. 2017;39(4):433–40. https://doi.org/10.1080/15567036.2016.1222467
- 52. Kumar R, Singh L, Zularisam A. Microbial fuel cells: types and applications. In: Waste biomass management–a holistic approach. Cham: Springer. 2017. p. 367–84. https://doi.org/10.1007/978-3-319-49595-8_16
- 53. Touqeer T, Miran W, Mumtaz MW, Mukhtar H. Design and configuration of microbial fuel cells. In: Ahmad A, Mohamad Ibrahim MN, Yaqoob AA, Mohd Setapar SH, editors. Microbial fuel cells for environmental remediation. Sustainable materials and technology. Singapore: Springer; 2022. p. 25–39. https://doi.org/10.1007/978-981-19-2681-5_3
- 54. Hassan H. Biomass-fueled and light energy-driven bioelectrochemical system. In: Shukor H, Mohd Zaini Makhtar M, Yaser AZ, editors. Biomass processing for sustainable circular economy. Singapore: Springer. 2025. p. 147–163. https://doi.org/10.1007/978-981-96-6279-1_8
- 55. Shabangu KP, Chetty M, Bakare BF. Metagenomic insights into pollutants in biorefinery and dairy wastewater: rDNA dominance and electricity generation in double-chamber microbial fuel cells. Bioengineering. 2025;12(1):88. https://doi.org/10.3390/bioengineering12010088
- 56. Bosire EM, Rosenbaum MA. Electrochemical potential influences phenazine production, electron transfer and consequently electric current generation by Pseudomonas aeruginosa. Front Microbiol. 2017;8:892. https://doi.org/10.3389/fmicb.2017.00892
- 57. Chukwubuikem A, Berger C, Mady A, Rosenbaum MA. Role of phenazine-enzyme physiology for current generation in a bioelectrochemical system. Microb Biotechnol. 2021;14(4):1613–26. https://doi.org/10.1111/1751-7915.13827
- 58. Petersen JF, Valk LC, Verhoeven MD, Nierychlo MA, Singleton CM, Dueholm MK, et al. Diversity and physiology of abundant Rhodoferax species in global wastewater treatment systems. Syst Appl Microbiol. 2025;48(1):126574. https://doi.org/10.1016/j.syapm.2024.126574
- 59. Agarry S. Bioelectricity generation and treatment of petroleum refinery effluent by Bacillus cereus and Clostridium butyricum using microbial fuel cell technology. Niger J Technol. 2017;36(2):543–51. https://doi.org/10.4314/njt.v36i2.30
- 60. Prasad J, Panda S. Microbial fuel cells: types of MFC and different source of substrate. Int J Latest Technol Eng Manag Appl Sci. 2018;7:158–65.
- 61. Ai C, Yan Z, Hou S, Zheng X, Zeng Z, Amanze C, et al. Effective treatment of acid mine drainage with microbial fuel cells: an emphasis on typical energy substrates. Minerals. 2020;10(5):443. https://doi.org/10.3390/min10050443
- 62. Apollon W, Rusyn I, Paucar NE, Hibbert M, Kamaraj SK, Sato C. Energy recovery from organic wastes using microbial fuel cells: traditional and nonconventional organic substrates. Resources. 2025;14(3):47. https://doi.org/10.3390/resources14030047
- 63. Venkatramanan V, Shah S, Prasad R. A critical review on microbial fuel cells technology: perspectives on wastewater treatment. Open Biotechnol J. 2021;15(1). https://doi.org/10.2174/1874070702115010131
- 64. Savvidou MG, Pandis PK, Mamma D, Sourkouni G, Argirusis C. Organic waste substrates for bioenergy production via microbial fuel cells: a key point review. Energies. 2022;15(15):5616. https://doi.org/10.3390/en15155616
- 65. Apollon W. An overview of microbial fuel cell technology for sustainable electricity production. Membranes. 2023;13(11):884. https://doi.org/10.3390/membranes13110884
- 66. Yaakop AS, Ahmad A, Hussain F, Oh SE, Alshammari MB, Chauhan R. Domestic organic waste: a potential source to produce energy via a single-chamber microbial fuel cell. Int J Chem Eng. 2023;2023:2425735. https://doi.org/10.1155/2023/2425735
- 67. Dannys E, Green T, Wettlaufer A, Madhurnathakam C, Elkamel A. Wastewater treatment with microbial fuel cells: a design and feasibility study for scale-up in microbreweries. J Bioprocess Biotech. 2016;6:267.
- 68. Pandit S, Savla N, Sonawane JM, Sani AMd, Gupta PK, Mathuriya AS, et al. Agricultural waste and wastewater as feedstock for bioelectricity generation using microbial fuel cells: recent advances. Fermentation. 2021;7(3):169. https://doi.org/10.3390/fermentation7030169
- 69. Peng X, Tang T, Zhu X, Jia G, Ding Y, Chen Y, et al. Remediation of acid mine drainage using microbial fuel cell based on sludge anaerobic fermentation. Environ Technol. 2017;38(19):2400–09. https://doi.org/10.1080/09593330.2016.1262462
- 70. Akagunduz D, Aydin O, Tuncay E, Bermek H. Microbial fuel cells: a potent and sustainable solution for heavy metal removal. Euchembioj Rev. 2025;1:45–69. https://doi.org/10.62063/rev-6
- 71. Bolognesi S, Cecconet D, Callegari A, Capodaglio AG. Combined microalgal photobioreactor/microbial fuel cell system: performance analysis under different process conditions. Environ Res. 2021;192:110263. https://doi.org/10.1016/j.envres.2020.110263
- 72. Reddy AS, Kasa VP, Samal B, Dubey BK, Yadav V, Pandey DS. Sustainable agricultural waste management in India: innovations, challenges and future perspectives. Biomass Bioenergy. 2025;202:108261. https://doi.org/10.1016/j.biombioe.2025.108261
- 73. Singhal A, Gupta AK, Dubey B, Ghangrekar MM. Seasonal characterization of municipal solid waste for selecting feasible waste treatment technology for Guwahati city, India. J Air Waste Manag Assoc. 2022;72(2):147–60. https://doi.org/10.1080/10962247.2021.1980450
- 74. Elakkiya E, Niju S. Application of microbial fuel cells for treatment of paper and pulp industry wastewater: opportunities and challenges. Environ Biotechnol. 2020;2:125–49. https://doi.org/10.1007/978-3-030-38196-7_6
- 75. Ezziat L, Elabed A, Ibnsouda S, El Abed S. Challenges of microbial fuel cell architecture on heavy metal recovery and removal from wastewater. Front Energy Res. 2019;7:1. https://doi.org/10.3389/fenrg.2019.00001
- 76. Chaturvedi V, Verma P. Microbial fuel cell: a green approach for the utilization of waste for the generation of bioelectricity. Bioresour Bioprocess. 2016;3(1):38. https://doi.org/10.1186/s40643-016-0116-6
- 77. Khan MU, Usman M, Ashraf MA, Dutta N, Luo G, Zhang S. Recent advancements in pretreatment techniques of lignocellulosic materials for biogas production: opportunities and limitations. Chem Eng J Adv. 2022;10:100263. https://doi.org/10.1016/j.ceja.2022.100263
- 78. Kucharska K, Rybarczyk P, Hołowacz I, Łukajtis R, Glinka M, Kamiński M. Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules. 2018;23(11):2937. https://doi.org/10.3390/molecules23112937
- 79. Greenman J, Thorn R, Willey N, Ieropoulos I. Energy harvesting from plants using hybrid microbial fuel cells: potential applications and future exploitation. Front Bioeng Biotechnol. 2024;12:1276176. https://doi.org/10.3389/fbioe.2024.1276176
- 80. Elhenawy S, Khraisheh M, AlMomani F, Al-Ghouti M, Hassan MK. From waste to watts: updates on key applications of microbial fuel cells in wastewater treatment and energy production. Sustainability. 2022;14(2):955. https://doi.org/10.3390/su14020955
- 81. Chakraborty I, Sathe S, Khuman C, Ghangrekar M. Bioelectrochemically powered remediation of xenobiotic compounds and heavy metal toxicity using microbial fuel cell and microbial electrolysis cell. Mater Sci Energy Technol. 2020;3:104–15. https://doi.org/10.1016/j.mset.2019.09.011
- 82. Kaushik A, Singh A. Metal removal and recovery using bioelectrochemical technology: major determinants and opportunities for synchronic wastewater treatment and energy production. J Environ Manag. 2020;270:110826. https://doi.org/10.1016/j.jenvman.2020.110826
- 83. Sonawane JM, Ezugwu CI, Ghosh PC. Microbial fuel cell-based biological oxygen demand sensors for monitoring wastewater: state-of-the-art and practical applications. ACS Sens. 2020;5(8):2297–316. https://doi.org/10.1021/acssensors.0c01299
- 84. Esfandyari M, Jafari D, Azami H. Microbial fuel cells for energy production in wastewater treatment plants: a review. Biofuels. 2024;15(6):743–53. https://doi.org/10.1080/17597269.2023.2294227
- 85. Ömeroğlu S, Sanin FD. Bioelectricity generation from wastewater sludge using microbial fuel cells: a critical review. Clean Soil Air Water. 2016;44(9):1225–33. https://doi.org/10.1002/clen.201500829
- 86. Tiwari B, Ghangrekar M. Enhancing electrogenesis by pretreatment of mixed anaerobic sludge used as inoculum in microbial fuel cells. Energy Fuels. 2015;29(5):3518–24. https://doi.org/10.1021/ef5028197
- 87. Khandaker S, Das S, Hossain MT, Islam A, Miah MR, Awual MR. Sustainable approaches for wastewater treatment using microbial fuel cells and green energy generation: a comprehensive review. J Mol Liq. 2021;344:117795. https://doi.org/10.1016/j.molliq.2021.117795
- 88. Sanjana M, Prajna R, Urvi SK, Kavitha R. Bioremediation: the recent drift towards a sustainable environment. Environ Sci Adv. 2024;3(8):1097–110. https://doi.org/10.1039/D3VA00358B
- 89. Chettri D, Verma AK, Verma AK. Bioaugmentation: an approach to biological treatment of pollutants. Biodegradation. 2024;35(2):117–35. https://doi.org/10.1007/s10532-023-10050-5
- 90. Esa FN, Him NRN. Bioaugmentation as a bioremediation approach for contaminated soil: a review. J Teknol (Sci Eng). 2024;86(5):89–102. https://doi.org/10.11113/jurnalteknologi.v86.21085
- 91. Jalili P, Ala A, Nazari P, Jalili B, Ganji DD. A comprehensive review of microbial fuel cells considering materials, methods, structures and microorganisms. Heliyon. 2024;10(3). https://doi.org/10.1016/j.heliyon.2024.e25439
- 92. Alipoursarbani M, Tideman J, López M, Abendroth C. Bioaugmentation in anaerobic digesters: a systematic review. bioRxiv. 2025. https://doi.org/10.1101/2025.01.22.634285
- 93. Dayal L, Yadav K, Dey U, Das K, Kumari P, Raj D, et al. Recent advancement in microplastic removal process from wastewater: a critical review. J Hazard Mater Adv. 2024;16:100460. https://doi.org/10.1016/j.hazadv.2024.100460
- 94. Bhadra S, Pulipati T, Aerva ST, Nayak S, Sevda S. Evaluating microplastic effects on performance and electrochemistry of microbial fuel cells for wastewater treatment. J Hazard Toxic Radioact Waste. 2025;29(1):04024031. https://doi.org/10.1061/JHTRBP.HZENG-1367
- 95. Schievano A, Goglio A, Erckert C, Marzorati S, Rago L, Cristiani P. Organic waste and bioelectrochemical systems: a future interface between electricity and methane distribution grids. Detritus. 2018;1(1):57.
- 96. Boas JV, Oliveira V, Marcon L, Simões M, Pinto A. Optimization of a single chamber microbial fuel cell using Lactobacillus pentosus: influence of design and operating parameters. Sci Total Environ. 2019;648:263–70. https://doi.org/10.1016/j.scitotenv.2018.08.061
- 97. Munoz-Cupa C, Hu Y, Xu C, Bassi A. An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production. Sci Total Environ. 2021;754:142429. https://doi.org/10.1016/j.scitotenv.2020.142429
- 98. Verma P, Daverey A, Kumar A, Arunachalam K. Microbial fuel cell: a sustainable approach for simultaneous wastewater treatment and energy recovery. J Water Process Eng. 2021;40:101768. https://doi.org/10.1016/j.jwpe.2020.101768
- 99. Sriwichai N, Sangcharoen R, Saithong T, Simpson D, Goryanin I, Boonapatcharoen N, et al. Optimization of microbial fuel cell performance application to high sulfide industrial wastewater treatment by modulating microbial function. PLoS One. 2024;19(6):e0305673. https://doi.org/10.1371/journal.pone.0305673
- 100. Fadous NJ, Jaeel A, Al-Mawla Y, Rahi MN, editors. Electrical power generation and synthetic wastewater treatment using microbial fuel cell. In: AIP Conf Proc. Melville (NY): AIP Publishing LLC. 2024. https://doi.org/10.1063/5.0193337
- 101. Narayan M, Solanki P, Srivastava RK, Mittal A, Singh N, Akhter F, et al. Optimizing COD removal, lignin degradation and electricity generation from pulp and paper industry wastewater by CW-MFC using Box–Behnken design. Front Energy Res. 2025;13:1549247. https://doi.org/10.3389/fenrg.2025.1549247
- 102. Abbas SZ, Rafatullah M. Recent advances in soil microbial fuel cells for soil contaminants remediation. Chemosphere. 2021;272:129691. https://doi.org/10.1016/j.chemosphere.2021.129691
- 103. Gangadharan P, Nambi IM. Hexavalent chromium reduction and energy recovery using dual-chamber microbial fuel cell. Water Sci Technol. 2015;71(3):353–58. https://doi.org/10.2166/wst.2014.524
- 104. Álvarez-Ley JE, Méndez-Novelo RI, Giácoman-Vallejos G, Solar LAP, San-Pedro L. Microbial fuel cells for power generation and wastewater treatment: a review of components, performance and sustainability. Int J Hydrogen Energy. 2025;137:429–47. https://doi.org/10.1016/j.ijhydene.2025.05.140
- 105. Daud NNM, Al-Zaqri N, Yaakop AS, Ibrahim MNM, Guerrero-Barajas C. Stimulating bioelectric generation and recovery of toxic metals through benthic microbial fuel cell driven by local sago (Cycas revoluta) waste. Environ Sci Pollut Res. 2024;31(12):18750–64. https://doi.org/10.1007/s11356-024-32372-4
- 106. Daud NNM, Ibrahim MNM, Yaqoob AA, Yaakop AS, Hussin MH. Evaluating electrode materials to improve electricity generation with removal of multiple pollutants through microbial fuel cells. Biomass Conv Bioref. 2025;15(1):1295–316. https://doi.org/10.1007/s13399-023-05256-9
- 107. Wang H, Li Y, Mi Y, Wang D, Wang Z, Meng H, et al. Cu(II) and Cr(VI) removal in tandem with electricity generation via dual-chamber microbial fuel cells. Sustainability. 2023;15(3):2388. https://doi.org/10.3390/su15032388
- 108. Zhang X, Liu Y, Li C. Influence of Cr(VI) concentration on Cr(VI) reduction and electricity production in microbial fuel cell. Environ Sci Pollut Res. 2021;28(38):54170–76. https://doi.org/10.1007/s11356-021-15889-w
- 109. Das S, Kumar S, Mehta AK, Ghangrekar MM. Heavy metals removal by algae and usage of activated metal-enriched biomass as cathode catalyst for improving performance of photosynthetic microbial fuel cell. Bioresour Technol. 2024;406:131038. https://doi.org/10.1016/j.biortech.2024.131038
- 110. Yaqoob AA, Serrà A, Bhawani SA, Ibrahim MNM, Khan A, Alorfi HS, et al. Utilizing biomass-based graphene oxide–polyaniline–Ag electrodes in microbial fuel cells to boost energy generation and heavy metal removal. Polymers (Basel). 2022;14(4):845. https://doi.org/10.3390/polym14040845
- 111. Idris MO, Kim H-C, Yaqoob AA, Ibrahim MNM. Exploring the effectiveness of microbial fuel cell for the degradation of organic pollutants coupled with bio-energy generation. Sustain Energy Technol Assess. 2022;52:102183. https://doi.org/10.1016/j.seta.2022.102183
- 112. Galai S, Perez de los Rios A, Hernández-Fernández FJ, Kacem SH, Ramírez FM, Quesada-Medina J. Microbial fuel cell application for azoic dye decolorization with simultaneous bioenergy production using Stenotrophomonas sp. Chem Eng Technol. 2015;38(9):1511–18. https://doi.org/10.1002/ceat.201400608
- 113. Adelaja O. Bioremediation of petroleum hydrocarbons using microbial fuel cells [thesis]. London: University of Westminster. 2015.
- 114. Qin G, Feng H, Yu R, Zheng F, Jiang X, Xia L, et al. Removal characteristics of IBP and DCF in wastewater by CW-MFC with different co-substrates. Water (Basel). 2023;15(21):3862. https://doi.org/10.3390/w15213862
- 115. Wu J-L, Liu Z-H, Ma Q-G, Dai L, Dang Z. Occurrence, removal and risk evaluation of ibuprofen and acetaminophen in municipal wastewater treatment plants: a critical review. Sci Total Environ. 2023;891:164600. https://doi.org/10.1016/j.scitotenv.2023.164600
- 116. Parvez R, Roy N, Shovon MS, Biswas KK, Shaha RK, Sharma SCD. Ex situ and in situ decolorization of the textile dye methylene blue by a cheese whey–microbial fuel cell. Water Pract Technol. 2024;19(11):4599–611. https://doi.org/10.2166/wpt.2024.262
- 117. Mittal Y, Dash S, Srivastava P, Mishra PM, Aminabhavi TM, Yadav AK. Azo dye-containing wastewater treatment in earthen membrane-based unplanted two-chamber constructed wetlands–microbial fuel cells: a new design for enhanced performance. Chem Eng J. 2022;427:131856. https://doi.org/10.1016/j.cej.2021.131856
- 118. Baby MG, Ahammed MM. Nutrient removal and recovery from wastewater by microbial fuel cell-based systems: a review. Water Sci Technol. 2022;86(1):29–55. https://doi.org/10.2166/wst.2022.196
- 119. Nancharaiah Y, Mohan SV, Lens P. Recent advances in nutrient removal and recovery in biological and bioelectrochemical systems. Bioresour Technol. 2016;215:173–185. https://doi.org/10.1016/j.biortech.2016.03.129
- 120. Kumar VK, Manangath SP, Gajalakshmi S. Innovative pilot-scale constructed wetland–microbial fuel cell system for enhanced wastewater treatment and bioelectricity production. Chem Eng J. 2023;460:141686. https://doi.org/10.1016/j.cej.2023.141686
- 121. Sajana T, Ghangrekar M, Mitra A. In situ bioremediation using sediment microbial fuel cell. J Hazard Toxic Radioact Waste. 2017;21(2):04016022. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000339
- 122. Zhang R, Dai W, Xiang H, Chen J, Yi T, Li J, et al. Characteristics and driving factors of power generation performance in microbial fuel cells: an analysis based on the CNKI database. Front Microbiol. 2025;16:1620539. https://doi.org/10.3389/fmicb.2025.1620539
- 123. Chakma R, Hossain MK, Paramasivam P, Bousbih R, Amami M, Toki GI, et al. Recent applications, challenges and future prospects of microbial fuel cells: a review. Glob Challenges. 2025;9(5):2500004. https://doi.org/10.1002/gch2.202500004
- 124. Do MH, Ngo HH, Guo W, Chang SW, Nguyen DD, Liu Y, et al. Microbial fuel cell-based biosensor for online monitoring of wastewater quality: a critical review. Sci Total Environ. 2020;712:135612. https://doi.org/10.1016/j.scitotenv.2019.135612
- 125. Jadhav DA, Chendake AD, Ghosal D, Mathuriya AS, Kumar SS, Pandit S. Advanced microbial fuel cell for biosensor applications to detect quality parameters of pollutants. In: Singh L, Mahapatra DM, Thakur S, editors. Bioremediation, nutrients, and other valuable product recovery. Elsevier. 2021. p. 125–139. https://doi.org/10.1016/B978-0-12-821729-0.00003-8
- 126. Sun J-Z, Kingori GP, Si R-W, Zhai D-D, Liao Z-H, Sun D-Z, et al. Microbial fuel cell-based biosensors for environmental monitoring: a review. Water Sci Technol. 2015;71(6):801–09. https://doi.org/10.2166/wst.2015.035
- 127. Tardy GM, Lóránt B, Gyalai-Korpos M, Bakos V, Simpson D, Goryanin I. Microbial fuel cell biosensor for the determination of biochemical oxygen demand of wastewater samples containing readily and slowly biodegradable organics. Biotechnol Lett. 2021;43(2):445–54. https://doi.org/10.1007/s10529-020-03050-5
- 128. Yang W, Wei X, Choi S. A two-channel bacteria-based biosensor for water quality monitoring. In: 2015 IEEE SENSORS. Busan, Korea (South). 2015. p. 1–4.
- 129. Zhang P, Liu J, Qu Y, Li D, He W, Feng Y. Nanomaterials for facilitating microbial extracellular electron transfer: recent progress and challenges. Bioelectrochemistry. 2018;123:190–200. https://doi.org/10.1016/j.bioelechem.2018.05.005
- 130. Li M, Zhou M, Tian X, Tan C, McDaniel CT, Hassett DJ, et al. Microbial fuel cell power performance improvement through enhanced microbial electrogenicity. Biotechnol Adv. 2018;36(4):1316–27. https://doi.org/10.1016/j.biotechadv.2018.04.010
- 131. You J, Fan H, Winfield J, Ieropoulos IA. Complete microbial fuel cell fabrication using additive layer manufacturing. Molecules. 2020;25(13):3051. https://doi.org/10.3390/molecules25133051
- 132. Onwusinkwue S, Osasona F, Ahmad IAI, Anyanwu AC, Dawodu SO, Obi OC, et al. Artificial intelligence in renewable energy: a review of predictive maintenance and energy optimization. World J Adv Res Rev. 2024;21(1):2487–99. https://doi.org/10.30574/wjarr.2024.21.1.0347
- 133. Kumar R, Singh L, Zularisam A, Hai FI. Microbial fuel cell as an emerging versatile technology: applications, challenges and strategies to improve performance. Int J Energy Res. 2018;42(2):369–94. https://doi.org/10.1002/er.3780
- 134. Ci S, Cai P, Wen Z, Li J. Graphene-based electrode materials for microbial fuel cells. Sci China Mater. 2015;58(6):496–509. https://doi.org/10.1007/s40843-015-0061-2
- 135. Starowicz A, Zieliński M, Rusanowska P, Dębowski M. Microbial fuel cell performance boost through the use of graphene and its modifications. Energies. 2023;16(2):576. https://doi.org/10.3390/en16020576
- 136. Aiswaria P, Mohamed SN, Singaravelu DL, Brindhadevi K, Pugazhendhi A. Graphene/graphene oxide-supported electrodes for microbial fuel cell applications: challenges and prospects. Chemosphere. 2022;296:133983. https://doi.org/10.1016/j.chemosphere.2022.133983
- 137. Chouhan RS, Gandhi S, Verma SK, Jerman I, Baker S, Štrok M. Recent advancements in two-dimensional nanostructured anode materials for stable power density in microbial fuel cells. Renew Sustain Energy Rev. 2023;188:113813. https://doi.org/10.1016/j.rser.2023.113813
- 138. Jung WS, Kim T, Popov BN. Development of highly active and stable catalyst supports and platinum-free catalysts for PEM fuel cells. J Electrochem Soc. 2022;169(7):074501. https://doi.org/10.1149/1945-7111/ac7827
- 139. Hu C, Paul R, Dai Q, Dai L. Carbon-based metal-free electrocatalysts: from oxygen reduction to multifunctional electrocatalysis. Chem Soc Rev. 2021;50(21):11785–843. https://doi.org/10.1039/D1CS00219H
- 140. Skorupska M, Ilnicka A, Lukaszewicz JP. Manufacturing protocols of N-rich carbon electrodes ensuring high oxygen reduction reaction activity: a review. Processes. 2022;10(4):643. https://doi.org/10.3390/pr10040643
- 141. Seroka NS, Luo H, Khotseng L. Biochar-derived anode materials for lithium-ion batteries: a review. Batteries. 2024;10(5):144. https://doi.org/10.3390/batteries10050144
- 142. Chung TH, Dhar BR. Applications of three-dimensional printing for microbial electrochemical technologies: a mini-review. Front Energy Res. 2021;9:679061. https://doi.org/10.3389/fenrg.2021.679061
- 143. Singh S, Suresh S. Review on microbial fuel cell energy enhancement using nano materials. In: Suresh S, Kumar A, Shukla A, Singh R, Krishna C, editors. Biofuels and bioenergy (BICE2016). Springer proceedings in energy. Cham: Springer. 2017. p. 321–327. https://doi.org/10.1007/978-3-319-47257-7_30
- 144. Li W. Nano-materials as anode electrocatalysts for microbial fuel cells. Adv Mater. 2019;4:1–3. https://doi.org/10.15761/AMS.1000156
- 145. Antolini E. Composite materials for polymer electrolyte membrane microbial fuel cells. Biosens Bioelectron. 2015;69:54–70. https://doi.org/10.1016/j.bios.2015.02.013
- 146. Han TH, Parveen N, Shim JH, Nguyen ATN, Mahato N, Cho MH. Ternary composite of polyaniline, graphene and TiO2 as a bifunctional catalyst to enhance the performance of both the bioanode and cathode of a microbial fuel cell. Ind Eng Chem Res. 2018;57(19):6705–13. https://doi.org/10.1021/acs.iecr.7b05314
- 147. Zhang X, He W, Zhang R, Wang Q, Liang P, Huang X, et al. High-performance carbon aerogel air cathodes for microbial fuel cells. ChemSusChem. 2016;9(19):2788–95. https://doi.org/10.1002/cssc.201600590
- 148. Ostermann M, Velicsanyi P, Bilotto P, Schodl J, Nadlinger M, Fafilek G, et al. Development and up-scaling of electrochemical production and mild thermal reduction of graphene oxide. Materials. 2022;15(13):4639. https://doi.org/10.3390/ma15134639
- 149. Qiu Z, Liu Z, Miao J, Zheng F, Jiang J, Li Y, et al. Scalable production of electrochemically exfoliated graphene by an extensible electrochemical reactor with encapsulated anode and dual cathodes. Appl Surf Sci. 2023;608:155211. https://doi.org/10.1016/j.apsusc.2022.155211
- 150. Agrahari R, Bayar B, Abubackar HN, Giri BS, Rene ER, Rani R. Advances in the development of electrode materials for improving the reactor kinetics in microbial fuel cells. Chemosphere. 2022;290:133184 https://doi.org/10.1016/j.chemosphere.2021.133184 .
- 151. Chin MY, Phuang ZX, Woon KS, Hanafiah MM, Zhang Z, Liu X. Life cycle assessment of bioelectrochemical and integrated microbial fuel cell systems for sustainable wastewater treatment and resource recovery. J Environ Manage. 2022;320:115778. https://doi.org/10.1016/j.jenvman.2022.115778
- 152. Miwornunyuie N, Alamu SO, Mao G, Benani N, Hunter J, Oguntimein G. Comparative life cycle and techno-economic assessment of constructed wetland, microbial fuel cell and their integration for wastewater treatment. Clean Technol. 2025;7(3):57. https://doi.org/10.3390/cleantechnol7030057
- 153. Angelaalincy MJ, Navanietha Krishnaraj R, Shakambari G, Ashokkumar B, Kathiresan S, Varalakshmi P. Biofilm engineering approaches for improving the performance of microbial fuel cells and bioelectrochemical systems. Front Energy Res. 2018;6:63. https://doi.org/10.3389/fenrg.2018.00063
- 154. Li C, Cheng S. Functional group surface modifications for enhancing the formation and performance of exoelectrogenic biofilms on the anode of a bioelectrochemical system. Crit Rev Biotechnol. 2019;39(8):1015–30. https://doi.org/10.1080/07388551.2019.1662367
- 155. Vázquez OFG, Reyes CF, Morales MO, Kamaraj S-K, Virgen MdRM, Montoya VH. Facile scalable manufacture of improved electrodes using structured surface coatings of nickel oxide as cathode and reduced graphene oxide as anode for evaluation in a prototype development on microbial fuel cells. Int J Hydrogen Energy. 2022;47(70):30248–61. https://doi.org/10.1016/j.ijhydene.2022.06.311
- 156. Dwivedi KA, Huang S-J, Wang C-T. Integration of various technology-based approaches for enhancing the performance of microbial fuel cell technology: a review. Chemosphere. 2022;287:132248. https://doi.org/10.1016/j.chemosphere.2021.132248
- 157. Ardakani MN, Gholikandi GB. Microbial fuel cells (MFCs) in integration with anaerobic treatment processes (AnTPs) and membrane bioreactors (MBRs) for simultaneous efficient wastewater/sludge treatment and energy recovery-a state-of-the-art review. Biomass Bioenergy. 2020;141:105726. https://doi.org/10.1016/j.biombioe.2020.105726
- 158. Rusyn I, Gómora-Hernández JC. Constructed wetland microbial fuel cell as enhancing pollutants treatment technology to produce green energy. Biotechnol Adv. 2024;77:108468. https://doi.org/10.1016/j.biotechadv.2024.108468
- 159. Pietrelli A, Bavasso I, Lovecchio N, Ferrara V, Allard B, editors. MFCs as biosensor, bioreactor and bioremediator. In: 2019 IEEE 8th International Workshop on Advances in Sensors and Interfaces (IWASI). Otranto, Italy. 2019. p. 302–306. https://doi.org/10.1109/IWASI.2019.8791412
- 160. Corona-Martínez DA, Martínez-Amador SY, Rodríguez-De la Garza JA, Laredo-Alcalá EI, Pérez-Rodríguez P. Recent advances in scaling up bioelectrochemical systems: a review. BioTech. 2025;14(1):8. https://doi.org/10.3390/biotech14010008
- 161. Asensio Y, Mansilla E, Fernandez-Marchante C, Lobato J, Cañizares P, Rodrigo M. Towards the scale-up of bioelectrogenic technology: stacking microbial fuel cells to produce larger amounts of electricity. J Appl Electrochem. 2017;47(10):1115-25. https://doi.org/10.1007/s10800-017-1101-2
- 162. Palanisamy G, Thangarasu S, Dharman RK, Patil CS, Negi TPPS, Kurkuri MD, et al. The growth of biopolymers and natural earthen sources as membrane/separator materials for microbial fuel cells: a comprehensive review. J Energy Chem. 2023;80:402-31. https://doi.org/10.1016/j.jechem.2023.01.018
- 163. Gowd SC, Ramesh P, Vigneswaran V, Barathi S, Rajendran K. Life cycle assessment of comparing different nutrient recovery systems from municipal wastewater: a path towards self-reliance and sustainability. J Clean Prod. 2023;410:137331. https://doi.org/10.1016/j.jclepro.2023.137331
- 164. Yang W, Logan BE. Immobilization of a metal-nitrogen-carbon catalyst on activated carbon with enhanced cathode performance in microbial fuel cells. Chem Sus Chem. 2016;9(16):2226-32. https://doi.org/10.1002/cssc.201600573
- 165. Yang W, Li J, Fu Q, Zhang L, Wei Z, Liao Q, et al. Minimizing mass transfer losses in microbial fuel cells: theories, progresses and prospectives. Renew Sustain Energy Rev. 2021;136:110460. https://doi.org/10.1016/j.rser.2020.110460
- 166. Noori MT, Ghangrekar M, Mukherjee C, Min B. Biofouling effects on the performance of microbial fuel cells and recent advances in biotechnological and chemical strategies for mitigation. Biotechnol Adv. 2019;37(8):107420. https://doi.org/10.1016/j.biotechadv.2019.107420
- 167. Jamil A, Rafiq S, Iqbal T, Khan HAA, Khan HM, Azeem B, et al. Current status and future perspectives of proton exchange membranes for hydrogen fuel cells. Chemosphere. 2022;303:135204. https://doi.org/10.1016/j.chemosphere.2022.135204
- 168. Tan WH, Chong S, Fang H-W, Pan K-L, Mohamad M, Lim JW, et al. Microbial fuel cell technology-a critical review on scale-up issues. Processes. 2021;9(6):985. https://doi.org/10.3390/pr9060985
- 169. Walter XA, Madrid E, Gajda I, Greenman J, Ieropoulos I. Microbial fuel cell scale-up options: performance evaluation of membrane (c-MFC) and membrane-less (s-MFC) systems under different feeding regimes. J Power Sources. 2022;520:230875. https://doi.org/10.1016/j.jpowsour.2021.230875
- 170. Microbial fuel cell market, till 2035: distribution by type of fuel cell, type of application, end user, type of enterprise, and geographical regions: industry trends and global forecasts [Internet]. MarketResearch.com. https://www.marketresearch.com/Roots-Analysis-Pvt-Ltd-v3981/Microbial-Fuel-Cell-Till-Distribution-42624306/
Downloads
Download data is not yet available.