Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Microbial fuel cells: A sustainable approach for environmental remediation and green energy generation

DOI
https://doi.org/10.14719/pst.11222
Submitted
10 August 2025
Published
10-12-2025

Abstract

Microbial fuel cells (MFCs) are an innovative, eco-friendly bioelectrochemical technology that simultaneously treats wastewater and generates renewable electricity by harnessing the metabolic activity of electroactive microbes. This review surveys advancements in MFC research from 2015 to 2025, highlighting key performance metrics, including power densities that typically range from 100 to 2000 mW/m² and chemical oxygen demand (COD) removal efficiencies between 60 % and 90 % across various organic substrates. MFCs generally consist of an anode chamber, where electrogenic bacteria oxidize organic matter, a cathode chamber that facilitates oxygen reduction and a proton exchange membrane (PEM) separating these compartments. Both pure cultures and mixed microbial communities play vital roles, with electrogenic microbes such as Geobacter sulfurreducens, Shewanella oneidensis and Pseudomonas aeruginosa being particularly important for electricity production. The technology effectively degrades a wide range of pollutants, including heavy metals (HMs), dyes, pharmaceuticals and nutrients, while utilizing waste streams such as domestic wastewater, industrial effluent, agricultural runoff and sludge to generate bioelectricity. Recent advances focus on improving electrode materials, exploring membrane alternatives and optimizing reactor designs to enhance electron transfer efficiency, increase power output and reduce costs. Despite challenges such as low power density, technical complexity, high material costs and scalability limitations, MFCs align with global sustainability goals, particularly the United Nations Sustainable Development Goals (SDGs) 6 and 7, offering potential for decentralized wastewater treatment and clean energy generation. Future research should prioritize interdisciplinary collaboration, policy support and industry engagement to bridge current gaps and advance the commercial deployment of MFC technology.

References

  1. 1. Pathak P. Renewable energy as a sustainable alternative: a way forward. In: Alternative energy resources: the way to a sustainable modern society. Cham: Springer. 2020. p. 317–21. https://doi.org/10.1007/698_2020_634
  2. 2. Soares RB, Memelli MS, Roque RP, Gonçalves RF. Comparative analysis of the energy consumption of different wastewater treatment plants. Int J Archit Arts Appl. 2017;3(6):79–86. https://doi.org/10.11648/j.ijaaa.20170306.11
  3. 3. Nowotny J, Dodson J, Fiechter S, Gür TM, Kennedy B, Macyk W, et al. Towards global sustainability: education on environmentally clean energy technologies. Renew Sustain Energy Rev. 2018;81:2541–51. https://doi.org/10.1016/j.rser.2017.06.060
  4. 4. Song H-L, Zhu Y, Li J. Electron transfer mechanisms, characteristics and applications of biological cathode microbial fuel cells: a mini-review. Arab J Chem. 2019;12(8):2236–43. https://doi.org/10.1016/j.arabjc.2015.01.008
  5. 5. Adepitan OL, Alabi OO, Gbadeyan OJ, Deenadayalu N. Bioelectrochemical systems for waste treatment and valorization: a review of applications and benefits. Biofuels Bioprod Biorefin. 2025. https://doi.org/10.1002/bbb.70035
  6. 6. Vishwanathan A. Microbial fuel cells: a comprehensive review for beginners. 3 Biotech. 2021;11(5):248. https://doi.org/10.1007/s13205-021-02802-y
  7. 7. Thapa BS, Pandit S, Patwardhan SB, Tripathi S, Mathuriya AS, Gupta PK, et al. Application of microbial fuel cell for pharmaceutical wastewater treatment: an overview and future perspectives. Sustainability. 2022;14(14):8379. https://doi.org/10.3390/su14148379
  8. 8. Elshobary ME, Zabed HM, Yun J, Zhang G, Qi X. Recent insights into microalgae-assisted microbial fuel cells for generating sustainable bioelectricity. Int J Hydrogen Energy. 2021;46(4):3135–59. https://doi.org/10.1016/j.ijhydene.2020.06.251
  9. 9. Shamshad J, Rehman RU. Innovative approaches to sustainable wastewater treatment: a comprehensive exploration of conventional and emerging technologies. Environ Sci Adv. 2025. https://doi.org/10.1039/D4VA00136B
  10. 10. Chandrasekhar K, Kadier A, Kumar G, Nastro RA, Jeevitha V. Challenges in microbial fuel cell and future scope. In: Das D, editor. Microbial fuel cell. Cham: Springer. 2018. p. 483–499. https://doi.org/10.1007/978-3-319-66793-5_25
  11. 11. Rahim ZA, Iqbal MS, Bakar NA. Exploring innovations and trends in microbial fuel cells using TRIZ patent literature review. J Chem Technol Biotechnol. 2025. https://doi.org/10.1002/jctb.7895
  12. 12. Shajid SR, Mourshed M, Kibria MG, Shabani B. The potential of microbial fuel cells as a dual solution for sustainable wastewater treatment and energy generation: a case study. Energies. 2025;18(14):3725. https://doi.org/10.3390/en18143725
  13. 13. Prasad J, Tripathi RK. Review on improving microbial fuel cell power management systems for consumer applications. Energy Rep. 2022;8:10418–433. https://doi.org/10.1016/j.egyr.2022.08.192
  14. 14. Roy H, Rahman TU, Tasnim N, Arju J, Rafid MM, Islam MR, et al. Microbial fuel cell construction features and application for sustainable wastewater treatment. Membranes. 2023;13(5):490. https://doi.org/10.3390/membranes13050490
  15. 15. Aghababaie M, Farhadian M, Jeihanipour A, Biria D. Effective factors on the performance of microbial fuel cells in wastewater treatment: a review. Environ Technol Rev. 2015;4(1):71–89. https://doi.org/10.1080/09593330.2015.1077896
  16. 16. Priya A, Subha C, Kumar PS, Suresh R, Rajendran S, Vasseghian Y, et al. Advancements on sustainable microbial fuel cells and their future prospects: a review. Environ Res. 2022;210:112930. https://doi.org/10.1016/j.envres.2022.112930
  17. 17. Stoll ZA, Dolfing J, Ren ZJ, Xu P. Interplay of anode, cathode and current in microbial fuel cells: implications for wastewater treatment. Energy Technol. 2016;4(5):583–92. https://doi.org/10.1002/ente.201500397
  18. 18. Zhang Q, Liu L. A microbial fuel cell system with manganese dioxide/titanium dioxide/graphitic carbon nitride-coated granular activated carbon cathode successfully treated organic acids industrial wastewater with residual nitric acid. Bioresour Technol. 2020;304:122992. https://doi.org/10.1016/j.biortech.2020.122992
  19. 19. Khilari S, Pradhan D. Role of cathode catalyst in microbial fuel cell. In: Microbial fuel cell: a bioelectrochemical system that converts waste to watts. Cham: Springer. 2017. p. 141–163. https://doi.org/10.1007/978-3-319-66793-5_8
  20. 20. Kesarwani S, Panwar D, Mal J, Pradhan N, Rani R. Constructed wetland coupled microbial fuel cell: a clean technology for sustainable treatment of wastewater and bioelectricity generation. Fermentation. 2022;9(1):6. https://doi.org/10.3390/fermentation9010006
  21. 21. Abd-Elrahman NK, Al-Harbi N, Basfer NM, Al-Hadeethi Y, Umar A, Akbar S. Applications of nanomaterials in microbial fuel cells: a review. Molecules. 2022;27(21):7483. https://doi.org/10.3390/molecules27217483
  22. 22. Naha A, Debroy R, Sharma D, Shah MP, Nath S. Microbial fuel cell: a state-of-the-art and revolutionizing technology for efficient energy recovery. Clean Circ Bioecon. 2023;5:100050. https://doi.org/10.1016/j.clcb.2023.100050
  23. 23. Roy A, Bharadvaja N. Removal of toxic pollutants using microbial fuel cells. In: Removal of toxic pollutants through microbiological and tertiary treatment. Amsterdam: Elsevier. 2020. p. 153–177. https://doi.org/10.1016/B978-0-12-821014-7.00005-8
  24. 24. Wang H, Park J-D, Ren ZJ. Practical energy harvesting for microbial fuel cells: a review. Environ Sci Technol. 2015;49(6):3267–77. https://doi.org/10.1021/es5047765
  25. 25. Pankratova G, Hederstedt L, Gorton L. Extracellular electron transfer features of Gram-positive bacteria. Anal Chim Acta. 2019;1076:32–47. https://doi.org/10.1016/j.aca.2019.05.007
  26. 26. Wang R, Li H, Sun J, Zhang L, Jiao J, Wang Q, et al. Nanomaterials facilitating microbial extracellular electron transfer at interfaces. Adv Mater. 2021;33(6):2004051. https://doi.org/10.1002/adma.202004051
  27. 27. Zhang J, You Z, Liu D, Tang R, Zhao C, Cao Y, et al. Conductive proteins-based extracellular electron transfer of electroactive microorganisms. Quant Biol. 2023;11(4):405–420. https://doi.org/10.1002/qub2.24
  28. 28. Jayabal R, Sivanraju R. Wastewater treatment for energy conservation and zero carbon footprint: a review. Energy Sci Eng. 2025. https://doi.org/10.1002/ese3.70142
  29. 29. Gude VG. Integrating bioelectrochemical systems for sustainable wastewater treatment. Clean Technol Environ Policy. 2018;20(5):911–24. https://doi.org/10.1007/s10098-018-1536-0
  30. 30. Unuofin JO, Iwarere SA, Daramola MO. Embracing the future of circular bio-enabled economy: unveiling the prospects of microbial fuel cells in achieving true sustainable energy. Environ Sci Pollut Res Int. 2023;30(39):90547–573. https://doi.org/10.1007/s11356-023-28717-0
  31. 31. Bajracharya S, Sharma M, Mohanakrishna G, Benneton XD, Strik DP, Sarma PM, et al. An overview on emerging bioelectrochemical systems (BESs): technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond. Renew Energy. 2016;98:153–170. https://doi.org/10.1016/j.renene.2016.03.002
  32. 32. Yaqoob AA, Mohamad Ibrahim MN, Rafatullah M, Chua YS, Ahmad A, Umar K. Recent advances in anodes for microbial fuel cells: an overview. Materials. 2020;13(9):2078. https://doi.org/10.3390/ma13092078
  33. 33. Kardi SN, Ibrahim N, Rashid NAA, Darzi GN. Investigating effect of proton-exchange membrane on new air-cathode single-chamber microbial fuel cell configuration for bioenergy recovery from Azorubine dye degradation. Environ Sci Pollut Res Int. 2019;26(21):21201–215. https://doi.org/10.1007/s11356-019-05204-z
  34. 34. Fudge T. Development of a biological electrochemical system for decentralised wastewater treatment and energy production in remote and under-served regions [thesis]. London: Brunel University London. 2020.
  35. 35. Verma M, Mishra V. Bioelectricity generation by microbial degradation of banana peel waste biomass in a dual-chamber Saccharomyces cerevisiae-based microbial fuel cell. Biomass Bioenergy. 2023;168:106677. https://doi.org/10.1016/j.biombioe.2022.106677
  36. 36. Yazdi H, Alzate-Gaviria L, Ren ZJ. Pluggable microbial fuel cell stacks for septic wastewater treatment and electricity production. Bioresour Technol. 2015;180:258–63. https://doi.org/10.1016/j.biortech.2014.12.100
  37. 37. Das D. Microbial fuel cell. Cham: Springer-Verlag GmbH. 2018. https://doi.org/10.1007/978-3-319-66793-5
  38. 38. Wu S, Li H, Zhou X, Liang P, Zhang X, Jiang Y, et al. A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment. Water Res. 2016;98:396–403. https://doi.org/10.1016/j.watres.2016.04.043
  39. 39. Zhou S. Working principle and application of microbial fuel cell. Innov Sci Technol. 2022;1(3):51–55. https://doi.org/10.56397/IST.2022.10.05
  40. 40. Kumar R, Singh L, Wahid ZA, Din MFM. Exoelectrogens in microbial fuel cells toward bioelectricity generation: a review. Int J Energy Res. 2015;39(8):1048–67. https://doi.org/10.1002/er.3305
  41. 41. Slate AJ. Optimisation of a Pseudomonas aeruginosa microbial fuel cell coupled with additive manufacturing of graphene electrodes to enhance power outputs [thesis]. Manchester: Manchester Metropolitan University. 2019.
  42. 42. Zhu D, Adebisi WA, Ahmad F, Sethupathy S, Danso B, Sun J. Recent development of extremophilic bacteria and their application in biorefinery. Front Bioeng Biotechnol. 2020;8:483. https://doi.org/10.3389/fbioe.2020.00483
  43. 43. Gallo G, Aulitto M. Advances in extremophile research: biotechnological applications through isolation and identification techniques. Life. 2024;14(9):1205. https://doi.org/10.3390/life14091205
  44. 44. Dakal TC, Singh N, Kaur A, Dhillon PK, Bhatankar J, Meena R, et al. New horizons in microbial fuel cell technology: applications, challenges and prospects. Biotechnol Biofuels Bioprod. 2025;18(1):79. https://doi.org/10.1186/s13068-025-02649-y
  45. 45. Ali HE, Hemdan BA, El-Naggar ME, El-Liethy MA, Jadhav DA, El-Hendawy HH, et al. Harnessing the power of microbial fuel cells as pioneering green technology: advancing sustainable energy and wastewater treatment through innovative nanotechnology. Bioprocess Biosyst Eng. 2025;48(3):343–66. https://doi.org/10.1007/s00449-024-03115-z
  46. 46. Commault AS, Lear G, Weld RJ. Maintenance of Geobacter-dominated biofilms in microbial fuel cells treating synthetic wastewater. Bioelectrochemistry. 2015;106:150–58. https://doi.org/10.1016/j.bioelechem.2015.04.011
  47. 47. Zou L, Wu X, Huang Y, Ni H, Long ZE. Promoting Shewanella bidirectional extracellular electron transfer for bioelectrocatalysis by electropolymerized riboflavin interface on carbon electrode. Front Microbiol. 2019;9:3293. https://doi.org/10.3389/fmicb.2018.03293
  48. 48. Wu W, Hong H, Lin J, Yang D. Antimicrobial responses to bacterial metabolic activity and biofilm formation studied using microbial fuel cell-based biosensors. Biosensors. 2024;14(12):606. https://doi.org/10.3390/bios14120606
  49. 49. Vasyliv OM, Maslovska OD, Ferensovych YP, Bilyy OI, Hnatush SO. Interconnection between tricarboxylic acid cycle and energy generation in microbial fuel cell performed by Desulfuromonas acetoxidans IMV B-7384. In: Energy harvesting and storage: materials, devices, and applications VI. Proc SPIE; 2015. 94930J. https://doi.org/10.1117/12.2176222
  50. 50. Braga JK, Stancari RA, Motteran F, Malavazi I, Varesche MBA. Metals addition for enhanced hydrogen, acetic and butyric acids production from cellulosic substrates by Clostridium butyricum. Biomass Bioenergy. 2021;150:105679. https://doi.org/10.1016/j.biombioe.2020.105679
  51. 51. Jothinathan D, Wilson RT. Production of bioelectricity in MFC by Pseudomonas fragi DRR-2 (psychrophilic) isolated from goat rumen fluid. Energy Sources Part A Recover Util Environ Eff. 2017;39(4):433–40. https://doi.org/10.1080/15567036.2016.1222467
  52. 52. Kumar R, Singh L, Zularisam A. Microbial fuel cells: types and applications. In: Waste biomass management–a holistic approach. Cham: Springer. 2017. p. 367–84. https://doi.org/10.1007/978-3-319-49595-8_16
  53. 53. Touqeer T, Miran W, Mumtaz MW, Mukhtar H. Design and configuration of microbial fuel cells. In: Ahmad A, Mohamad Ibrahim MN, Yaqoob AA, Mohd Setapar SH, editors. Microbial fuel cells for environmental remediation. Sustainable materials and technology. Singapore: Springer; 2022. p. 25–39. https://doi.org/10.1007/978-981-19-2681-5_3
  54. 54. Hassan H. Biomass-fueled and light energy-driven bioelectrochemical system. In: Shukor H, Mohd Zaini Makhtar M, Yaser AZ, editors. Biomass processing for sustainable circular economy. Singapore: Springer. 2025. p. 147–163. https://doi.org/10.1007/978-981-96-6279-1_8
  55. 55. Shabangu KP, Chetty M, Bakare BF. Metagenomic insights into pollutants in biorefinery and dairy wastewater: rDNA dominance and electricity generation in double-chamber microbial fuel cells. Bioengineering. 2025;12(1):88. https://doi.org/10.3390/bioengineering12010088
  56. 56. Bosire EM, Rosenbaum MA. Electrochemical potential influences phenazine production, electron transfer and consequently electric current generation by Pseudomonas aeruginosa. Front Microbiol. 2017;8:892. https://doi.org/10.3389/fmicb.2017.00892
  57. 57. Chukwubuikem A, Berger C, Mady A, Rosenbaum MA. Role of phenazine-enzyme physiology for current generation in a bioelectrochemical system. Microb Biotechnol. 2021;14(4):1613–26. https://doi.org/10.1111/1751-7915.13827
  58. 58. Petersen JF, Valk LC, Verhoeven MD, Nierychlo MA, Singleton CM, Dueholm MK, et al. Diversity and physiology of abundant Rhodoferax species in global wastewater treatment systems. Syst Appl Microbiol. 2025;48(1):126574. https://doi.org/10.1016/j.syapm.2024.126574
  59. 59. Agarry S. Bioelectricity generation and treatment of petroleum refinery effluent by Bacillus cereus and Clostridium butyricum using microbial fuel cell technology. Niger J Technol. 2017;36(2):543–51. https://doi.org/10.4314/njt.v36i2.30
  60. 60. Prasad J, Panda S. Microbial fuel cells: types of MFC and different source of substrate. Int J Latest Technol Eng Manag Appl Sci. 2018;7:158–65.
  61. 61. Ai C, Yan Z, Hou S, Zheng X, Zeng Z, Amanze C, et al. Effective treatment of acid mine drainage with microbial fuel cells: an emphasis on typical energy substrates. Minerals. 2020;10(5):443. https://doi.org/10.3390/min10050443
  62. 62. Apollon W, Rusyn I, Paucar NE, Hibbert M, Kamaraj SK, Sato C. Energy recovery from organic wastes using microbial fuel cells: traditional and nonconventional organic substrates. Resources. 2025;14(3):47. https://doi.org/10.3390/resources14030047
  63. 63. Venkatramanan V, Shah S, Prasad R. A critical review on microbial fuel cells technology: perspectives on wastewater treatment. Open Biotechnol J. 2021;15(1). https://doi.org/10.2174/1874070702115010131
  64. 64. Savvidou MG, Pandis PK, Mamma D, Sourkouni G, Argirusis C. Organic waste substrates for bioenergy production via microbial fuel cells: a key point review. Energies. 2022;15(15):5616. https://doi.org/10.3390/en15155616
  65. 65. Apollon W. An overview of microbial fuel cell technology for sustainable electricity production. Membranes. 2023;13(11):884. https://doi.org/10.3390/membranes13110884
  66. 66. Yaakop AS, Ahmad A, Hussain F, Oh SE, Alshammari MB, Chauhan R. Domestic organic waste: a potential source to produce energy via a single-chamber microbial fuel cell. Int J Chem Eng. 2023;2023:2425735. https://doi.org/10.1155/2023/2425735
  67. 67. Dannys E, Green T, Wettlaufer A, Madhurnathakam C, Elkamel A. Wastewater treatment with microbial fuel cells: a design and feasibility study for scale-up in microbreweries. J Bioprocess Biotech. 2016;6:267.
  68. 68. Pandit S, Savla N, Sonawane JM, Sani AMd, Gupta PK, Mathuriya AS, et al. Agricultural waste and wastewater as feedstock for bioelectricity generation using microbial fuel cells: recent advances. Fermentation. 2021;7(3):169. https://doi.org/10.3390/fermentation7030169
  69. 69. Peng X, Tang T, Zhu X, Jia G, Ding Y, Chen Y, et al. Remediation of acid mine drainage using microbial fuel cell based on sludge anaerobic fermentation. Environ Technol. 2017;38(19):2400–09. https://doi.org/10.1080/09593330.2016.1262462
  70. 70. Akagunduz D, Aydin O, Tuncay E, Bermek H. Microbial fuel cells: a potent and sustainable solution for heavy metal removal. Euchembioj Rev. 2025;1:45–69. https://doi.org/10.62063/rev-6
  71. 71. Bolognesi S, Cecconet D, Callegari A, Capodaglio AG. Combined microalgal photobioreactor/microbial fuel cell system: performance analysis under different process conditions. Environ Res. 2021;192:110263. https://doi.org/10.1016/j.envres.2020.110263
  72. 72. Reddy AS, Kasa VP, Samal B, Dubey BK, Yadav V, Pandey DS. Sustainable agricultural waste management in India: innovations, challenges and future perspectives. Biomass Bioenergy. 2025;202:108261. https://doi.org/10.1016/j.biombioe.2025.108261
  73. 73. Singhal A, Gupta AK, Dubey B, Ghangrekar MM. Seasonal characterization of municipal solid waste for selecting feasible waste treatment technology for Guwahati city, India. J Air Waste Manag Assoc. 2022;72(2):147–60. https://doi.org/10.1080/10962247.2021.1980450
  74. 74. Elakkiya E, Niju S. Application of microbial fuel cells for treatment of paper and pulp industry wastewater: opportunities and challenges. Environ Biotechnol. 2020;2:125–49. https://doi.org/10.1007/978-3-030-38196-7_6
  75. 75. Ezziat L, Elabed A, Ibnsouda S, El Abed S. Challenges of microbial fuel cell architecture on heavy metal recovery and removal from wastewater. Front Energy Res. 2019;7:1. https://doi.org/10.3389/fenrg.2019.00001
  76. 76. Chaturvedi V, Verma P. Microbial fuel cell: a green approach for the utilization of waste for the generation of bioelectricity. Bioresour Bioprocess. 2016;3(1):38. https://doi.org/10.1186/s40643-016-0116-6
  77. 77. Khan MU, Usman M, Ashraf MA, Dutta N, Luo G, Zhang S. Recent advancements in pretreatment techniques of lignocellulosic materials for biogas production: opportunities and limitations. Chem Eng J Adv. 2022;10:100263. https://doi.org/10.1016/j.ceja.2022.100263
  78. 78. Kucharska K, Rybarczyk P, Hołowacz I, Łukajtis R, Glinka M, Kamiński M. Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules. 2018;23(11):2937. https://doi.org/10.3390/molecules23112937
  79. 79. Greenman J, Thorn R, Willey N, Ieropoulos I. Energy harvesting from plants using hybrid microbial fuel cells: potential applications and future exploitation. Front Bioeng Biotechnol. 2024;12:1276176. https://doi.org/10.3389/fbioe.2024.1276176
  80. 80. Elhenawy S, Khraisheh M, AlMomani F, Al-Ghouti M, Hassan MK. From waste to watts: updates on key applications of microbial fuel cells in wastewater treatment and energy production. Sustainability. 2022;14(2):955. https://doi.org/10.3390/su14020955
  81. 81. Chakraborty I, Sathe S, Khuman C, Ghangrekar M. Bioelectrochemically powered remediation of xenobiotic compounds and heavy metal toxicity using microbial fuel cell and microbial electrolysis cell. Mater Sci Energy Technol. 2020;3:104–15. https://doi.org/10.1016/j.mset.2019.09.011
  82. 82. Kaushik A, Singh A. Metal removal and recovery using bioelectrochemical technology: major determinants and opportunities for synchronic wastewater treatment and energy production. J Environ Manag. 2020;270:110826. https://doi.org/10.1016/j.jenvman.2020.110826
  83. 83. Sonawane JM, Ezugwu CI, Ghosh PC. Microbial fuel cell-based biological oxygen demand sensors for monitoring wastewater: state-of-the-art and practical applications. ACS Sens. 2020;5(8):2297–316. https://doi.org/10.1021/acssensors.0c01299
  84. 84. Esfandyari M, Jafari D, Azami H. Microbial fuel cells for energy production in wastewater treatment plants: a review. Biofuels. 2024;15(6):743–53. https://doi.org/10.1080/17597269.2023.2294227
  85. 85. Ömeroğlu S, Sanin FD. Bioelectricity generation from wastewater sludge using microbial fuel cells: a critical review. Clean Soil Air Water. 2016;44(9):1225–33. https://doi.org/10.1002/clen.201500829
  86. 86. Tiwari B, Ghangrekar M. Enhancing electrogenesis by pretreatment of mixed anaerobic sludge used as inoculum in microbial fuel cells. Energy Fuels. 2015;29(5):3518–24. https://doi.org/10.1021/ef5028197
  87. 87. Khandaker S, Das S, Hossain MT, Islam A, Miah MR, Awual MR. Sustainable approaches for wastewater treatment using microbial fuel cells and green energy generation: a comprehensive review. J Mol Liq. 2021;344:117795. https://doi.org/10.1016/j.molliq.2021.117795
  88. 88. Sanjana M, Prajna R, Urvi SK, Kavitha R. Bioremediation: the recent drift towards a sustainable environment. Environ Sci Adv. 2024;3(8):1097–110. https://doi.org/10.1039/D3VA00358B
  89. 89. Chettri D, Verma AK, Verma AK. Bioaugmentation: an approach to biological treatment of pollutants. Biodegradation. 2024;35(2):117–35. https://doi.org/10.1007/s10532-023-10050-5
  90. 90. Esa FN, Him NRN. Bioaugmentation as a bioremediation approach for contaminated soil: a review. J Teknol (Sci Eng). 2024;86(5):89–102. https://doi.org/10.11113/jurnalteknologi.v86.21085
  91. 91. Jalili P, Ala A, Nazari P, Jalili B, Ganji DD. A comprehensive review of microbial fuel cells considering materials, methods, structures and microorganisms. Heliyon. 2024;10(3). https://doi.org/10.1016/j.heliyon.2024.e25439
  92. 92. Alipoursarbani M, Tideman J, López M, Abendroth C. Bioaugmentation in anaerobic digesters: a systematic review. bioRxiv. 2025. https://doi.org/10.1101/2025.01.22.634285
  93. 93. Dayal L, Yadav K, Dey U, Das K, Kumari P, Raj D, et al. Recent advancement in microplastic removal process from wastewater: a critical review. J Hazard Mater Adv. 2024;16:100460. https://doi.org/10.1016/j.hazadv.2024.100460
  94. 94. Bhadra S, Pulipati T, Aerva ST, Nayak S, Sevda S. Evaluating microplastic effects on performance and electrochemistry of microbial fuel cells for wastewater treatment. J Hazard Toxic Radioact Waste. 2025;29(1):04024031. https://doi.org/10.1061/JHTRBP.HZENG-1367
  95. 95. Schievano A, Goglio A, Erckert C, Marzorati S, Rago L, Cristiani P. Organic waste and bioelectrochemical systems: a future interface between electricity and methane distribution grids. Detritus. 2018;1(1):57.
  96. 96. Boas JV, Oliveira V, Marcon L, Simões M, Pinto A. Optimization of a single chamber microbial fuel cell using Lactobacillus pentosus: influence of design and operating parameters. Sci Total Environ. 2019;648:263–70. https://doi.org/10.1016/j.scitotenv.2018.08.061
  97. 97. Munoz-Cupa C, Hu Y, Xu C, Bassi A. An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production. Sci Total Environ. 2021;754:142429. https://doi.org/10.1016/j.scitotenv.2020.142429
  98. 98. Verma P, Daverey A, Kumar A, Arunachalam K. Microbial fuel cell: a sustainable approach for simultaneous wastewater treatment and energy recovery. J Water Process Eng. 2021;40:101768. https://doi.org/10.1016/j.jwpe.2020.101768
  99. 99. Sriwichai N, Sangcharoen R, Saithong T, Simpson D, Goryanin I, Boonapatcharoen N, et al. Optimization of microbial fuel cell performance application to high sulfide industrial wastewater treatment by modulating microbial function. PLoS One. 2024;19(6):e0305673. https://doi.org/10.1371/journal.pone.0305673
  100. 100. Fadous NJ, Jaeel A, Al-Mawla Y, Rahi MN, editors. Electrical power generation and synthetic wastewater treatment using microbial fuel cell. In: AIP Conf Proc. Melville (NY): AIP Publishing LLC. 2024. https://doi.org/10.1063/5.0193337
  101. 101. Narayan M, Solanki P, Srivastava RK, Mittal A, Singh N, Akhter F, et al. Optimizing COD removal, lignin degradation and electricity generation from pulp and paper industry wastewater by CW-MFC using Box–Behnken design. Front Energy Res. 2025;13:1549247. https://doi.org/10.3389/fenrg.2025.1549247
  102. 102. Abbas SZ, Rafatullah M. Recent advances in soil microbial fuel cells for soil contaminants remediation. Chemosphere. 2021;272:129691. https://doi.org/10.1016/j.chemosphere.2021.129691
  103. 103. Gangadharan P, Nambi IM. Hexavalent chromium reduction and energy recovery using dual-chamber microbial fuel cell. Water Sci Technol. 2015;71(3):353–58. https://doi.org/10.2166/wst.2014.524
  104. 104. Álvarez-Ley JE, Méndez-Novelo RI, Giácoman-Vallejos G, Solar LAP, San-Pedro L. Microbial fuel cells for power generation and wastewater treatment: a review of components, performance and sustainability. Int J Hydrogen Energy. 2025;137:429–47. https://doi.org/10.1016/j.ijhydene.2025.05.140
  105. 105. Daud NNM, Al-Zaqri N, Yaakop AS, Ibrahim MNM, Guerrero-Barajas C. Stimulating bioelectric generation and recovery of toxic metals through benthic microbial fuel cell driven by local sago (Cycas revoluta) waste. Environ Sci Pollut Res. 2024;31(12):18750–64. https://doi.org/10.1007/s11356-024-32372-4
  106. 106. Daud NNM, Ibrahim MNM, Yaqoob AA, Yaakop AS, Hussin MH. Evaluating electrode materials to improve electricity generation with removal of multiple pollutants through microbial fuel cells. Biomass Conv Bioref. 2025;15(1):1295–316. https://doi.org/10.1007/s13399-023-05256-9
  107. 107. Wang H, Li Y, Mi Y, Wang D, Wang Z, Meng H, et al. Cu(II) and Cr(VI) removal in tandem with electricity generation via dual-chamber microbial fuel cells. Sustainability. 2023;15(3):2388. https://doi.org/10.3390/su15032388
  108. 108. Zhang X, Liu Y, Li C. Influence of Cr(VI) concentration on Cr(VI) reduction and electricity production in microbial fuel cell. Environ Sci Pollut Res. 2021;28(38):54170–76. https://doi.org/10.1007/s11356-021-15889-w
  109. 109. Das S, Kumar S, Mehta AK, Ghangrekar MM. Heavy metals removal by algae and usage of activated metal-enriched biomass as cathode catalyst for improving performance of photosynthetic microbial fuel cell. Bioresour Technol. 2024;406:131038. https://doi.org/10.1016/j.biortech.2024.131038
  110. 110. Yaqoob AA, Serrà A, Bhawani SA, Ibrahim MNM, Khan A, Alorfi HS, et al. Utilizing biomass-based graphene oxide–polyaniline–Ag electrodes in microbial fuel cells to boost energy generation and heavy metal removal. Polymers (Basel). 2022;14(4):845. https://doi.org/10.3390/polym14040845
  111. 111. Idris MO, Kim H-C, Yaqoob AA, Ibrahim MNM. Exploring the effectiveness of microbial fuel cell for the degradation of organic pollutants coupled with bio-energy generation. Sustain Energy Technol Assess. 2022;52:102183. https://doi.org/10.1016/j.seta.2022.102183
  112. 112. Galai S, Perez de los Rios A, Hernández-Fernández FJ, Kacem SH, Ramírez FM, Quesada-Medina J. Microbial fuel cell application for azoic dye decolorization with simultaneous bioenergy production using Stenotrophomonas sp. Chem Eng Technol. 2015;38(9):1511–18. https://doi.org/10.1002/ceat.201400608
  113. 113. Adelaja O. Bioremediation of petroleum hydrocarbons using microbial fuel cells [thesis]. London: University of Westminster. 2015.
  114. 114. Qin G, Feng H, Yu R, Zheng F, Jiang X, Xia L, et al. Removal characteristics of IBP and DCF in wastewater by CW-MFC with different co-substrates. Water (Basel). 2023;15(21):3862. https://doi.org/10.3390/w15213862
  115. 115. Wu J-L, Liu Z-H, Ma Q-G, Dai L, Dang Z. Occurrence, removal and risk evaluation of ibuprofen and acetaminophen in municipal wastewater treatment plants: a critical review. Sci Total Environ. 2023;891:164600. https://doi.org/10.1016/j.scitotenv.2023.164600
  116. 116. Parvez R, Roy N, Shovon MS, Biswas KK, Shaha RK, Sharma SCD. Ex situ and in situ decolorization of the textile dye methylene blue by a cheese whey–microbial fuel cell. Water Pract Technol. 2024;19(11):4599–611. https://doi.org/10.2166/wpt.2024.262
  117. 117. Mittal Y, Dash S, Srivastava P, Mishra PM, Aminabhavi TM, Yadav AK. Azo dye-containing wastewater treatment in earthen membrane-based unplanted two-chamber constructed wetlands–microbial fuel cells: a new design for enhanced performance. Chem Eng J. 2022;427:131856. https://doi.org/10.1016/j.cej.2021.131856
  118. 118. Baby MG, Ahammed MM. Nutrient removal and recovery from wastewater by microbial fuel cell-based systems: a review. Water Sci Technol. 2022;86(1):29–55. https://doi.org/10.2166/wst.2022.196
  119. 119. Nancharaiah Y, Mohan SV, Lens P. Recent advances in nutrient removal and recovery in biological and bioelectrochemical systems. Bioresour Technol. 2016;215:173–185. https://doi.org/10.1016/j.biortech.2016.03.129
  120. 120. Kumar VK, Manangath SP, Gajalakshmi S. Innovative pilot-scale constructed wetland–microbial fuel cell system for enhanced wastewater treatment and bioelectricity production. Chem Eng J. 2023;460:141686. https://doi.org/10.1016/j.cej.2023.141686
  121. 121. Sajana T, Ghangrekar M, Mitra A. In situ bioremediation using sediment microbial fuel cell. J Hazard Toxic Radioact Waste. 2017;21(2):04016022. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000339
  122. 122. Zhang R, Dai W, Xiang H, Chen J, Yi T, Li J, et al. Characteristics and driving factors of power generation performance in microbial fuel cells: an analysis based on the CNKI database. Front Microbiol. 2025;16:1620539. https://doi.org/10.3389/fmicb.2025.1620539
  123. 123. Chakma R, Hossain MK, Paramasivam P, Bousbih R, Amami M, Toki GI, et al. Recent applications, challenges and future prospects of microbial fuel cells: a review. Glob Challenges. 2025;9(5):2500004. https://doi.org/10.1002/gch2.202500004
  124. 124. Do MH, Ngo HH, Guo W, Chang SW, Nguyen DD, Liu Y, et al. Microbial fuel cell-based biosensor for online monitoring of wastewater quality: a critical review. Sci Total Environ. 2020;712:135612. https://doi.org/10.1016/j.scitotenv.2019.135612
  125. 125. Jadhav DA, Chendake AD, Ghosal D, Mathuriya AS, Kumar SS, Pandit S. Advanced microbial fuel cell for biosensor applications to detect quality parameters of pollutants. In: Singh L, Mahapatra DM, Thakur S, editors. Bioremediation, nutrients, and other valuable product recovery. Elsevier. 2021. p. 125–139. https://doi.org/10.1016/B978-0-12-821729-0.00003-8
  126. 126. Sun J-Z, Kingori GP, Si R-W, Zhai D-D, Liao Z-H, Sun D-Z, et al. Microbial fuel cell-based biosensors for environmental monitoring: a review. Water Sci Technol. 2015;71(6):801–09. https://doi.org/10.2166/wst.2015.035
  127. 127. Tardy GM, Lóránt B, Gyalai-Korpos M, Bakos V, Simpson D, Goryanin I. Microbial fuel cell biosensor for the determination of biochemical oxygen demand of wastewater samples containing readily and slowly biodegradable organics. Biotechnol Lett. 2021;43(2):445–54. https://doi.org/10.1007/s10529-020-03050-5
  128. 128. Yang W, Wei X, Choi S. A two-channel bacteria-based biosensor for water quality monitoring. In: 2015 IEEE SENSORS. Busan, Korea (South). 2015. p. 1–4.
  129. 129. Zhang P, Liu J, Qu Y, Li D, He W, Feng Y. Nanomaterials for facilitating microbial extracellular electron transfer: recent progress and challenges. Bioelectrochemistry. 2018;123:190–200. https://doi.org/10.1016/j.bioelechem.2018.05.005
  130. 130. Li M, Zhou M, Tian X, Tan C, McDaniel CT, Hassett DJ, et al. Microbial fuel cell power performance improvement through enhanced microbial electrogenicity. Biotechnol Adv. 2018;36(4):1316–27. https://doi.org/10.1016/j.biotechadv.2018.04.010
  131. 131. You J, Fan H, Winfield J, Ieropoulos IA. Complete microbial fuel cell fabrication using additive layer manufacturing. Molecules. 2020;25(13):3051. https://doi.org/10.3390/molecules25133051
  132. 132. Onwusinkwue S, Osasona F, Ahmad IAI, Anyanwu AC, Dawodu SO, Obi OC, et al. Artificial intelligence in renewable energy: a review of predictive maintenance and energy optimization. World J Adv Res Rev. 2024;21(1):2487–99. https://doi.org/10.30574/wjarr.2024.21.1.0347
  133. 133. Kumar R, Singh L, Zularisam A, Hai FI. Microbial fuel cell as an emerging versatile technology: applications, challenges and strategies to improve performance. Int J Energy Res. 2018;42(2):369–94. https://doi.org/10.1002/er.3780
  134. 134. Ci S, Cai P, Wen Z, Li J. Graphene-based electrode materials for microbial fuel cells. Sci China Mater. 2015;58(6):496–509. https://doi.org/10.1007/s40843-015-0061-2
  135. 135. Starowicz A, Zieliński M, Rusanowska P, Dębowski M. Microbial fuel cell performance boost through the use of graphene and its modifications. Energies. 2023;16(2):576. https://doi.org/10.3390/en16020576
  136. 136. Aiswaria P, Mohamed SN, Singaravelu DL, Brindhadevi K, Pugazhendhi A. Graphene/graphene oxide-supported electrodes for microbial fuel cell applications: challenges and prospects. Chemosphere. 2022;296:133983. https://doi.org/10.1016/j.chemosphere.2022.133983
  137. 137. Chouhan RS, Gandhi S, Verma SK, Jerman I, Baker S, Štrok M. Recent advancements in two-dimensional nanostructured anode materials for stable power density in microbial fuel cells. Renew Sustain Energy Rev. 2023;188:113813. https://doi.org/10.1016/j.rser.2023.113813
  138. 138. Jung WS, Kim T, Popov BN. Development of highly active and stable catalyst supports and platinum-free catalysts for PEM fuel cells. J Electrochem Soc. 2022;169(7):074501. https://doi.org/10.1149/1945-7111/ac7827
  139. 139. Hu C, Paul R, Dai Q, Dai L. Carbon-based metal-free electrocatalysts: from oxygen reduction to multifunctional electrocatalysis. Chem Soc Rev. 2021;50(21):11785–843. https://doi.org/10.1039/D1CS00219H
  140. 140. Skorupska M, Ilnicka A, Lukaszewicz JP. Manufacturing protocols of N-rich carbon electrodes ensuring high oxygen reduction reaction activity: a review. Processes. 2022;10(4):643. https://doi.org/10.3390/pr10040643
  141. 141. Seroka NS, Luo H, Khotseng L. Biochar-derived anode materials for lithium-ion batteries: a review. Batteries. 2024;10(5):144. https://doi.org/10.3390/batteries10050144
  142. 142. Chung TH, Dhar BR. Applications of three-dimensional printing for microbial electrochemical technologies: a mini-review. Front Energy Res. 2021;9:679061. https://doi.org/10.3389/fenrg.2021.679061
  143. 143. Singh S, Suresh S. Review on microbial fuel cell energy enhancement using nano materials. In: Suresh S, Kumar A, Shukla A, Singh R, Krishna C, editors. Biofuels and bioenergy (BICE2016). Springer proceedings in energy. Cham: Springer. 2017. p. 321–327. https://doi.org/10.1007/978-3-319-47257-7_30
  144. 144. Li W. Nano-materials as anode electrocatalysts for microbial fuel cells. Adv Mater. 2019;4:1–3. https://doi.org/10.15761/AMS.1000156
  145. 145. Antolini E. Composite materials for polymer electrolyte membrane microbial fuel cells. Biosens Bioelectron. 2015;69:54–70. https://doi.org/10.1016/j.bios.2015.02.013
  146. 146. Han TH, Parveen N, Shim JH, Nguyen ATN, Mahato N, Cho MH. Ternary composite of polyaniline, graphene and TiO2 as a bifunctional catalyst to enhance the performance of both the bioanode and cathode of a microbial fuel cell. Ind Eng Chem Res. 2018;57(19):6705–13. https://doi.org/10.1021/acs.iecr.7b05314
  147. 147. Zhang X, He W, Zhang R, Wang Q, Liang P, Huang X, et al. High-performance carbon aerogel air cathodes for microbial fuel cells. ChemSusChem. 2016;9(19):2788–95. https://doi.org/10.1002/cssc.201600590
  148. 148. Ostermann M, Velicsanyi P, Bilotto P, Schodl J, Nadlinger M, Fafilek G, et al. Development and up-scaling of electrochemical production and mild thermal reduction of graphene oxide. Materials. 2022;15(13):4639. https://doi.org/10.3390/ma15134639
  149. 149. Qiu Z, Liu Z, Miao J, Zheng F, Jiang J, Li Y, et al. Scalable production of electrochemically exfoliated graphene by an extensible electrochemical reactor with encapsulated anode and dual cathodes. Appl Surf Sci. 2023;608:155211. https://doi.org/10.1016/j.apsusc.2022.155211
  150. 150. Agrahari R, Bayar B, Abubackar HN, Giri BS, Rene ER, Rani R. Advances in the development of electrode materials for improving the reactor kinetics in microbial fuel cells. Chemosphere. 2022;290:133184 https://doi.org/10.1016/j.chemosphere.2021.133184 .
  151. 151. Chin MY, Phuang ZX, Woon KS, Hanafiah MM, Zhang Z, Liu X. Life cycle assessment of bioelectrochemical and integrated microbial fuel cell systems for sustainable wastewater treatment and resource recovery. J Environ Manage. 2022;320:115778. https://doi.org/10.1016/j.jenvman.2022.115778
  152. 152. Miwornunyuie N, Alamu SO, Mao G, Benani N, Hunter J, Oguntimein G. Comparative life cycle and techno-economic assessment of constructed wetland, microbial fuel cell and their integration for wastewater treatment. Clean Technol. 2025;7(3):57. https://doi.org/10.3390/cleantechnol7030057
  153. 153. Angelaalincy MJ, Navanietha Krishnaraj R, Shakambari G, Ashokkumar B, Kathiresan S, Varalakshmi P. Biofilm engineering approaches for improving the performance of microbial fuel cells and bioelectrochemical systems. Front Energy Res. 2018;6:63. https://doi.org/10.3389/fenrg.2018.00063
  154. 154. Li C, Cheng S. Functional group surface modifications for enhancing the formation and performance of exoelectrogenic biofilms on the anode of a bioelectrochemical system. Crit Rev Biotechnol. 2019;39(8):1015–30. https://doi.org/10.1080/07388551.2019.1662367
  155. 155. Vázquez OFG, Reyes CF, Morales MO, Kamaraj S-K, Virgen MdRM, Montoya VH. Facile scalable manufacture of improved electrodes using structured surface coatings of nickel oxide as cathode and reduced graphene oxide as anode for evaluation in a prototype development on microbial fuel cells. Int J Hydrogen Energy. 2022;47(70):30248–61. https://doi.org/10.1016/j.ijhydene.2022.06.311
  156. 156. Dwivedi KA, Huang S-J, Wang C-T. Integration of various technology-based approaches for enhancing the performance of microbial fuel cell technology: a review. Chemosphere. 2022;287:132248. https://doi.org/10.1016/j.chemosphere.2021.132248
  157. 157. Ardakani MN, Gholikandi GB. Microbial fuel cells (MFCs) in integration with anaerobic treatment processes (AnTPs) and membrane bioreactors (MBRs) for simultaneous efficient wastewater/sludge treatment and energy recovery-a state-of-the-art review. Biomass Bioenergy. 2020;141:105726. https://doi.org/10.1016/j.biombioe.2020.105726
  158. 158. Rusyn I, Gómora-Hernández JC. Constructed wetland microbial fuel cell as enhancing pollutants treatment technology to produce green energy. Biotechnol Adv. 2024;77:108468. https://doi.org/10.1016/j.biotechadv.2024.108468
  159. 159. Pietrelli A, Bavasso I, Lovecchio N, Ferrara V, Allard B, editors. MFCs as biosensor, bioreactor and bioremediator. In: 2019 IEEE 8th International Workshop on Advances in Sensors and Interfaces (IWASI). Otranto, Italy. 2019. p. 302–306. https://doi.org/10.1109/IWASI.2019.8791412
  160. 160. Corona-Martínez DA, Martínez-Amador SY, Rodríguez-De la Garza JA, Laredo-Alcalá EI, Pérez-Rodríguez P. Recent advances in scaling up bioelectrochemical systems: a review. BioTech. 2025;14(1):8. https://doi.org/10.3390/biotech14010008
  161. 161. Asensio Y, Mansilla E, Fernandez-Marchante C, Lobato J, Cañizares P, Rodrigo M. Towards the scale-up of bioelectrogenic technology: stacking microbial fuel cells to produce larger amounts of electricity. J Appl Electrochem. 2017;47(10):1115-25. https://doi.org/10.1007/s10800-017-1101-2
  162. 162. Palanisamy G, Thangarasu S, Dharman RK, Patil CS, Negi TPPS, Kurkuri MD, et al. The growth of biopolymers and natural earthen sources as membrane/separator materials for microbial fuel cells: a comprehensive review. J Energy Chem. 2023;80:402-31. https://doi.org/10.1016/j.jechem.2023.01.018
  163. 163. Gowd SC, Ramesh P, Vigneswaran V, Barathi S, Rajendran K. Life cycle assessment of comparing different nutrient recovery systems from municipal wastewater: a path towards self-reliance and sustainability. J Clean Prod. 2023;410:137331. https://doi.org/10.1016/j.jclepro.2023.137331
  164. 164. Yang W, Logan BE. Immobilization of a metal-nitrogen-carbon catalyst on activated carbon with enhanced cathode performance in microbial fuel cells. Chem Sus Chem. 2016;9(16):2226-32. https://doi.org/10.1002/cssc.201600573
  165. 165. Yang W, Li J, Fu Q, Zhang L, Wei Z, Liao Q, et al. Minimizing mass transfer losses in microbial fuel cells: theories, progresses and prospectives. Renew Sustain Energy Rev. 2021;136:110460. https://doi.org/10.1016/j.rser.2020.110460
  166. 166. Noori MT, Ghangrekar M, Mukherjee C, Min B. Biofouling effects on the performance of microbial fuel cells and recent advances in biotechnological and chemical strategies for mitigation. Biotechnol Adv. 2019;37(8):107420. https://doi.org/10.1016/j.biotechadv.2019.107420
  167. 167. Jamil A, Rafiq S, Iqbal T, Khan HAA, Khan HM, Azeem B, et al. Current status and future perspectives of proton exchange membranes for hydrogen fuel cells. Chemosphere. 2022;303:135204. https://doi.org/10.1016/j.chemosphere.2022.135204
  168. 168. Tan WH, Chong S, Fang H-W, Pan K-L, Mohamad M, Lim JW, et al. Microbial fuel cell technology-a critical review on scale-up issues. Processes. 2021;9(6):985. https://doi.org/10.3390/pr9060985
  169. 169. Walter XA, Madrid E, Gajda I, Greenman J, Ieropoulos I. Microbial fuel cell scale-up options: performance evaluation of membrane (c-MFC) and membrane-less (s-MFC) systems under different feeding regimes. J Power Sources. 2022;520:230875. https://doi.org/10.1016/j.jpowsour.2021.230875
  170. 170. Microbial fuel cell market, till 2035: distribution by type of fuel cell, type of application, end user, type of enterprise, and geographical regions: industry trends and global forecasts [Internet]. MarketResearch.com. https://www.marketresearch.com/Roots-Analysis-Pvt-Ltd-v3981/Microbial-Fuel-Cell-Till-Distribution-42624306/

Downloads

Download data is not yet available.