Skip to main navigation menu Skip to main content Skip to site footer

Special call (Plant Systematics, Ethnobotany & Studies on Lower Plant Groups)

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

The SPL gene family in rice: Master regulators of abiotic stress tolerance and prospects for crop resilience

DOI
https://doi.org/10.14719/pst.11235
Submitted
11 August 2025
Published
03-11-2025

Abstract

Rice production faces severe challenges from abiotic stresses, including drought, salinity, heat, cold and nutrient imbalance, causing yield losses of 30-70 % depending on stress severity and developmental stage. SQUAMOSA promoter binding protein-LIKE (SPL) genes, regulated primarily by miR156 and miR529, have emerged as key transcriptional regulators of abiotic stress tolerance in rice. This review synthesizes current research on SPL gene functions in stress adaptation, examining their roles in hormone signalling, ion homeostasis and developmental regulation during both vegetative and reproductive stages. We analyse functional genomics and reverse genetics studies demonstrating SPL contributions to yield improvement and stress tolerance and evaluate recent advances in CRISPR/Cas9 and base editing technologies for precise SPL gene modulation. The findings reveal distinct tissue specific and developmental stage specific functions of miR156/miR529-SPL regulatory modules, with miR156 predominantly controlling vegetative development while miR529 regulates reproductive processes. This review provides a framework for leveraging SPL gene networks in developing climate-resilient rice varieties through targeted genome editing approaches.

References

  1. 1. Rezvi HUA, Tahjib-Ul-Arif M, Azim MA, Tumpa TA, Tipu MMH, Najnine F, et al. Rice and food security: Climate change implications and the future prospects for nutritional security. Food and Energy Security. 2023;12(1):e430. https://doi.org/10.1002/fes3.430
  2. 2. Wani SH, Sah S. Biotechnology and abiotic stress tolerance in rice. J Rice Res. 2014;2(2):e105. https://doi.org/10.4172/jrr.1000e105
  3. 3. Mottaleb KA, Rejesus RM, Murty MVR, Mohanty S, Li T. Benefits of the development and dissemination of climate-smart rice: ex ante impact assessment of drought-tolerant rice in South Asia. Mitigation and Adaptation Strategies for Global Change. 2017;22(6):879-901. https://doi.org/10.1007/s11027-016-9705-0
  4. 4. Zheng C, Liu C, Liu L, Tan Y, Sheng X, Yu D, et al. Effect of salinity stress on rice yield and grain quality: A meta-analysis. European Journal of Agronomy. 2023;144:126765. https://doi.org/10.1016/j.eja.2023.126765
  5. 5. Radha B, Sunitha NC, Sah RP, TP MA, Krishna G, Umesh DK, et al. Physiological and molecular implications of multiple abiotic stresses on yield and quality of rice. Frontiers in Plant Science. 2023;13:996514. https://doi.org/10.3389/fpls.2022.996514
  6. 6. Arif M, Jan T, Riaz M, Fahad S, Arif MS, Shakoor MB, et al. Advances in rice research for abiotic stress tolerance: Agronomic approaches to improve rice production under abiotic stress. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas JK, editors. Advances in Rice Research for Abiotic Stress Tolerance. Woodhead Publishing; 2019. p. 585-614. https://doi.org/10.1016/B978-0-12-814332-2.00029-0
  7. 7. Sarma B, Kashtoh H, Lama Tamang T, Bhattacharyya PN, Mohanta YK, Baek K-H. Abiotic stress in rice: Visiting the physiological response and its tolerance mechanisms. Plants. 2023;12(23):3948. https://doi.org/10.3390/plants12233948
  8. 8. Bhoite R, Onyemaobi O, Halder T, Shankar M, Sharma D. Transcription factors - Insights into abiotic and biotic stress resilience and crop improvement. Current Plant Biology. 2025;41:100434. https://doi.org/10.1016/j.cpb.2025.100434
  9. 9. Jisha V, Dampanaboina L, Vadassery J, Mithöfer A, Kappara S, Ramanan R. Overexpression of an AP2/ERF type transcription factor OsEREBP1 confers biotic and abiotic stress tolerance in rice. PloS One. 2015;10(6):e0127831. https://doi.org/10.1371/journal.pone.0127831
  10. 10. Todaka D, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K. Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice. 2012;5(1):6. https://doi.org/10.1186/1939-8433-5-6
  11. 11. Yan Y, Wei M, Li Y, Tao H, Wu H, Chen Z, et al. MiR529a controls plant height, tiller number, panicle architecture and grain size by regulating SPL target genes in rice (Oryza sativa L.). Plant Science. 2021;302:110728. https://doi.org/10.1016/j.plantsci.2020.110728
  12. 12. Li Y, He Y, Qin T, Guo X, Xu K, Xu C, et al. Functional conservation and divergence of miR156 and miR529 during rice development. The Crop Journal. 2023;11(3):692-703. https://doi.org/10.1016/j.cj.2022.11.005
  13. 13. Yue E, Li C, Li Y, Liu Z, Xu J-H. MiR529a modulates panicle architecture through regulating SQUAMOSA PROMOTER BINDING-LIKE genes in rice (Oryza sativa). Plant Molecular Biology. 2017;94(4):469-80. https://doi.org/10.1007/s11103-017-0618-4
  14. 14. Yue E, Tao H, Xu J. Genome-wide analysis of microRNA156 and its targets, the genes encoding SQUAMOSA promoter-binding protein-like (SPL) transcription factors, in the grass family Poaceae. Journal of Zhejiang University-SCIENCE B. 2021;22(5):366-82. https://doi.org/10.1631/jzus.B2000519
  15. 15. Kumar S, Sharma N, Sopory SK, Sanan-Mishra N. miRNAs and genes as molecular regulators of rice grain morphology and yield. Plant Physiology and Biochemistry. 2024;207:108363. https://doi.org/10.1016/j.plaphy.2024.108363
  16. 16. Shao Y, Zhou H-Z, Wu Y, Zhang H, Lin J, Jiang X, et al. OsSPL3, an SBP-domain protein, regulates crown root development in rice. The Plant Cell. 2019;31(6):1257-75. https://doi.org/10.1105/tpc.19.00038
  17. 17. Yuan H, Qin P, Hu L, Zhan S, Wang S, Gao P, et al. OsSPL18 controls grain weight and grain number in rice. Journal of Genetics and Genomics. 2019;46(1):41-51. https://doi.org/10.1016/j.jgg.2019.01.003
  18. 18. Sun Y, Fu M, Wang L, Bai Y, Fang X, Wang Q, et al. OsSPLs regulate male fertility in response to different temperatures by flavonoid biosynthesis and tapetum PCD in PTGMS rice. International Journal of Molecular Sciences. 2022;23(7):3744. https://doi.org/10.3390/ijms23073744
  19. 19. Lan T, Zheng Y, Su Z, Yu S, Song H, Zheng X, et al. OsSPL10, a SBP-box gene, plays a dual role in salt tolerance and trichome formation in rice (Oryza sativa L.). G3 Genes|Genomes|Genetics. 2019;9(12):4107-14. https://doi.org/10.1534/g3.119.400700
  20. 20. He DY, Liang QY, Xiang CB, Xia JQ. Loss of OsSPL8 function confers improved resistance to glufosinate and abiotic stresses in rice. Plant, Cell & Environment. 2025;48(1):682-98. https://doi.org/10.1111/pce.15168
  21. 21. Islam MAU, Nupur JA, Shafiq M, Ali Q, Sami A, Shahid MA. In silico and computational analysis of zinc finger motif-associated homeodomain (ZF-HD) family genes in chilli (Capsicum annuum L.). BMC Genomics. 2023;24(1):603. https://doi.org/10.1186/s12864-023-09682-x
  22. 22. Jiao Z, Wang L, Du H, Wang Y, Wang W, Liu J, et al. Genome-wide study of C2H2 zinc finger gene family in Medicago truncatula. BMC Plant Biology. 2020;20(1):401. https://doi.org/10.1186/s12870-020-02619-6
  23. 23. Zhang H, Zhang L, Han J, Qian Z, Zhou B, Xu Y, et al. The nuclear localization signal is required for the function of squamosa promoter binding protein-like gene 9 to promote vegetative phase change in Arabidopsis. Plant Molecular Biology. 2019;100(6):571-8. https://doi.org/10.1007/s11103-019-00863-5
  24. 24. Lu J, Wu T, Zhang B, Liu S, Song W, Qiao J, et al. Types of nuclear localization signals and mechanisms of protein import into the nucleus. Cell Communication and Signaling. 2021;19(1):60. https://doi.org/10.1186/s12964-021-00741-y
  25. 25. Chang CC, Hsia KC. More than a zip code: global modulation of cellular function by nuclear localization signals. The FEBS Journal. 2021;288(19):5569-85. https://doi.org/10.1111/febs.15659
  26. 26. Cokol M, Nair R, Rost B. Finding nuclear localization signals. EMBO Reports. 2000;1(5):411-5. https://doi.org/10.1093/embo-reports/kvd092
  27. 27. Li M, Yao T, Galli M, Lin W, Zhou Y, Chen JG, et al. Diversification and conservation of DNA binding specificities of SPL family of transcription factors. bioRxiv. 2024. https://doi.org/10.1101/2024.09.13.612952
  28. 28. Zhou Q, Zhang S, Chen F, Liu B, Wu L, Li F, et al. Genome-wide identification and characterization of the SBP-box gene family in Petunia. BMC Genomics. 2018;19(1):193. https://doi.org/10.1186/s12864-018-4537-9
  29. 29. Su R, Yuan B, Yang Y, Ao G, Wang J. Genome-wide analysis of SPL gene families illuminate the evolution patterns in three rubber-producing plants. Diversity. 2023;15(9):983. https://doi.org/10.3390/d15090983
  30. 30. Xie K, Wu C, Xiong L. Genomic organization, differential expression and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiology. 2006;142(1):280-93. https://doi.org/10.1104/pp.106.084475
  31. 31. Alisha A, Szweykowska-Kulinska Z, Sierocka I. Comparative analysis of SPL transcription factors from streptophyte algae and embryophytes reveals evolutionary trajectories of SPL family in streptophytes. Sci Rep. 2024;14(1):1611. https://doi.org/10.1038/s41598-024-51626-2
  32. 32. Li L, Shi F, Wang G, Guan Y, Zhang Y, Chen M, et al. Conservation and divergence of SQUAMOSA-promoter binding protein-like (SPL) gene family between wheat and rice. Int J Mol Sci. 2022;23(4). https://doi.org/10.3390/ijms23042099
  33. 33. Liu Q, Shen G, Peng K, Huang Z, Tong J, Kabir MH, et al. The alteration in the architecture of a T-DNA insertion rice mutant osmtd1 is caused by up-regulation of microRNA156f. Journal of Integrative Plant Biology. 2015;57(10):819-29. https://doi.org/10.1111/jipb.12340
  34. 34. Hoang TV, Vo KTX, Rahman MM, Choi S-H, Jeon J-S. Heat stress transcription factor OsSPL7 plays a critical role in reactive oxygen species balance and stress responses in rice. Plant Science. 2019;289:110273. https://doi.org/10.1016/j.plantsci.2019.110273
  35. 35. Jiang M, He Y, Chen X, Zhang X, Guo Y, Yang S, et al. CRISPR-based assessment of genomic structure in the conserved SQUAMOSA promoter-binding-like gene clusters in rice. The Plant Journal. 2020;104(5):1301-14. https://doi.org/10.1111/tpj.15001
  36. 36. Peng X, Wang Q, Zhao Y, Li X, Ma Q. Comparative genome analysis of the SPL gene family reveals novel evolutionary features in maize. Genetics and Molecular Biology. 2019;42(2):380-94. https://doi.org/10.1590/1678-4685-gmb-2017-0144
  37. 37. Zhong H, Kong W, Gong Z, Fang X, Deng X, Liu C, et al. Evolutionary analyses reveal diverged patterns of SQUAMOSA promoter binding protein-like (SPL) gene family in Oryza genus. Frontiers in Plant Science. 2019;10:2019. https://doi.org/10.3389/fpls.2019.00565
  38. 38. Tseng BS, Huang CC, King YC, Wu MT, Hsieh CH, Hsieh KT, et al. Hydrogen peroxide regulates the Osa-miR156-OsSPL2/OsTIFY11b module in rice. Plant, Cell & Environment. 2023;46(8):2507-22. https://doi.org/10.1111/pce.14605
  39. 39. Hui S, Ke Y, Chen D, Wang L, Li Q, Yuan M. Rice microRNA156/529-SQUAMOSA promoter binding protein-like7/14/17 modules regulate defenses against bacteria. Plant Physiology. 2023;192(3):2537-53. https://doi.org/10.1093/plphys/kiad201
  40. 40. Luo L, Li W, Miura K, Ashikari M, Kyozuka J. Control of tiller growth of rice by OsSPL14 and strigolactones, which work in two independent pathways. Plant and Cell Physiology. 2012;53(10):1793-801. https://doi.org/10.1093/pcp/pcs122
  41. 41. Li Y, He Y, Liu Z, Qin T, Wang L, Chen Z, et al. OsSPL14 acts upstream of OsPIN1b and PILS6b to modulate axillary bud outgrowth by fine-tuning auxin transport in Oryza sativa. Plant Journal. 2022;111(4):1167-82. https://doi.org/10.1111/tpj.15940s
  42. 42. Cui Y, Cheng J, Ruan S, Qi P, Liu W, Bian H, et al. The heterochronic gene Oryza sativa LIKE HETEROCHROMATIN PROTEIN 1 modulates miR156b/c/i/e levels. Journal of Integrative Plant Biology. 2020;62(12):1839-52. https://doi.org/10.1111/jipb.12987
  43. 43. Hu J, Huang L, Chen G, Liu H, Zhang Y, Zhang R, et al. The elite alleles of OsSPL4 regulate grain size and increase grain yield in Oryza sativa. Rice. 2021;14(1):90. https://doi.org/10.1186/s12284-021-00534-9
  44. 44. Liu M, Shi Z, Zhang X, Wang M, Zhang L, Zheng K, et al. Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in Oryza sativa. Nature Plants. 2019;5(4):389-400. https://doi.org/10.1038/s41477-019-0383-2
  45. 45. Lu L, Chen X, Chen J, Zhang Z, Zhang Z, Sun Y, et al. MicroRNA-encoded regulatory peptides modulate cadmium tolerance and accumulation in Oryza sativa. Plant, Cell & Environment. 2024;47(5):1452-70. https://doi.org/10.1111/pce.14892
  46. 46. Cui LG, Shan JX, Shi M, Gao JP, Lin HX. The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant Journal. 2014;80(6):1108-17. https://doi.org/10.1111/tpj.12679
  47. 47. Jerome Jeyakumar JM, Ali A, Wang WM, Thiruvengadam M. Characterizing the role of the miR156-SPL network in plant development and stress response. Plants. 2020;9(9):1206. https://doi.org/10.3390/plants9091206
  48. 48. Wang H, Wang H. The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits. Molecular Plant. 2015;8(5):677-88. https://doi.org/10.1016/j.molp.2015.01.008
  49. 49. Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, et al. OsSPL13 controls grain size in cultivated Oryza sativa. Nature Genetics. 2016;48(4):447-56. https://doi.org/10.1038/ng.3518
  50. 50. Nahar L, Aycan M, Hanamata S, Baslam M, Mitsui T. Impact of single and combined salinity and high-temperature stresses on agro-physiological, biochemical and transcriptional responses in Oryza sativa and stress-release. Plants. 2022;11(4):501. https://doi.org/10.3390/plants11040501
  51. 51. Kaur S, Seem K, Kumar D, Kumar S, Kaundal R, Mohapatra T. Biogenesis to functional significance of microRNAs under drought stress in Oryza sativa: Recent advances and future perspectives. Plant Stress. 2024;12:100447. https://doi.org/10.1016/j.stress.2024.100447
  52. 52. Wang L, Ming L, Liao K, Xia C, Sun S, Chang Y, et al. Bract suppression regulated by the miR156/529-SPLs-NL1-PLA1 module is required for the transition from vegetative to reproductive branching in Oryza sativa. Molecular Plant. 2021;14(7):1168-84. https://doi.org/10.1016/j.molp.2021.04.013
  53. 53. Li Y, Han S, Sun X, Khan NU, Zhong Q, Zhang Z, et al. Variations in OsSPL10 confer drought tolerance by directly regulating OsNAC2 expression and ROS production in Oryza sativa. Journal of Integrative Plant Biology. 2023;65(4):918-33. https://doi.org/10.1111/jipb.13513
  54. 54. Chen F, Zhang H, Li H, Lian L, Wei Y, Lin Y, et al. IPA1 improves drought tolerance by activating SNAC1 in Oryza sativa. BMC Plant Biology. 2023;23(1):55. https://doi.org/10.1186/s12870-023-04097-z
  55. 55. Khan Z, Jan R, Asif S, Farooq M, Jang YH, Kim EG, et al. Exogenous melatonin induces salt and drought stress tolerance in Oryza sativa by promoting plant growth and defense system. Scientific Reports. 2024;14(1):1214. https://doi.org/10.1038/s41598-023-50934-4
  56. 56. Ahmdikhah A, Safaeizadeh M, Tehranian AS. Responses of Oryza sativa to multiple abiotic stresses revealed by transcriptome meta-analysis and identification of novel genetic factors. Scientific Reports. 2025;15(1):8248. https://doi.org/10.1038/s41598-025-87248-1
  57. 57. Zhang R, Wang Y, Hussain S, Yang S, Li R, Liu S, et al. Study on the effect of salt stress on yield and grain quality among different Oryza sativa varieties. Frontiers in Plant Science. 2022;13:918460. https://doi.org/10.3389/fpls.2022.918460
  58. 58. Liu C, Mao B, Yuan D, Chu C, Duan M. Salt tolerance in Oryza sativa: Physiological responses and molecular mechanisms. Crop Journal. 2022;10(1):13-25. https://doi.org/10.1016/j.cj.2021.03.010
  59. 59. Xu Y, Bu W, Xu Y, Fei H, Zhu Y, Ahmad I, et al. Effects of salt stress on physiological and agronomic traits of Oryza sativa genotypes with contrasting salt tolerance. Plants. 2024;13(8):1157. https://doi.org/10.3390/plants13081157
  60. 60. Xuan Q, Zhou H, Zhu M, Wang J, Liang W. Creation of new glabrous and salt-tolerant Oryza sativa germplasm along the Yellow River by CRISPR-Cas9-mediated editing of OsSPL10. Sheng Wu Gong Cheng Xue Bao. 2025;41(2):706-18. https://doi.org/10.13345/j.cjb.230380
  61. 61. Arshad MS, Farooq M, Asch F, Krishna JSV, Prasad PVV, Siddique KHM. Thermal stress impacts reproductive development and grain yield in rice. Plant Physiology and Biochemistry. 2017;115:57-72. https://doi.org/10.1016/j.plaphy.2017.03.011
  62. 62. Ramakrishnan M, Zhang Z, Mullasseri S, Kalendar R, Ahmad Z, Sharma A, et al. Epigenetic stress memory: A new approach to study cold and heat stress responses in plants. Frontiers in Plant Science. 2022;13:1046233. https://doi.org/10.3389/fpls.2022.1075279
  63. 63. do Amaral MN, Arge LWP, Benitez LC, Danielowski R, Silveira SFdS, Farias DdR, et al. Comparative transcriptomics of rice plants under cold, iron and salt stresses. Functional & Integrative Genomics. 2016;16(5):567-79. https://doi.org/10.1007/s10142-016-0507-y
  64. 64. Wang H, Lu S, Guan X, Jiang Y, Wang B, Hua J, et al. Dehydration-responsive element binding protein 1C, 1E and 1G promote stress tolerance to chilling, heat, drought and salt in rice. Frontiers in Plant Science. 2022;13:828139. https://doi.org/10.3389/fpls.2022.851731
  65. 65. Sun M, Shen Y, Yang J, Cai X, Li H, Zhu Y, et al. miR535 negatively regulates cold tolerance in rice. Molecular Breeding. 2020;40(1):14. https://doi.org/10.1007/s11032-019-1094-0
  66. 66. Zhou M, Tang W. MicroRNA156 amplifies transcription factor-associated cold stress tolerance in plant cells. Molecular Genetics and Genomics. 2019;294(2):379-93. https://doi.org/10.1007/s00438-018-1516-4
  67. 67. Yadav S, Yadava YK, Meena S, Singh L, Kansal R, Grover M, et al. The SPL transcription factor genes are potential targets for epigenetic regulation in response to drought stress in chickpea (Cicer arietinum L.). Molecular Biology Reports. 2023;50(6):5509-17. https://doi.org/10.1007/s11033-023-08347-y
  68. 68. Bai X, Wu S, Bai AN, Zhang YM, Zhang Y, Yao XF, et al. OsSPL9 promotes Cu uptake and translocation in rice grown in high-Fe red soil. New Phytologist. 2025;246(5):2207-21. https://doi.org/10.1111/nph.70074
  69. 69. Usman B, Nawaz G, Zhao N, Liao S, Qin B, Liu F, et al. Programmed editing of rice (Oryza sativa L.) OsSPL16 gene using CRISPR/Cas9 improves grain yield by modulating the expression of pyruvate enzymes and cell cycle proteins. International Journal of Molecular Sciences. 2021;22(1):249. https://doi.org/10.3390/ijms22010249
  70. 70. Srikanth B, Subhakara Rao I, Surekha K, Subrahmanyam D, Voleti SR, Neeraja CN. Enhanced expression of OsSPL14 gene and its association with yield components in rice (Oryza sativa) under low nitrogen conditions. Gene. 2016;576(1 Pt 3):441-50. https://doi.org/10.1016/j.gene.2015.10.062
  71. 71. Lian L, Xu H, Zhang H, He W, Cai Q, Lin Y, et al. Overexpression of OsSPL14 results in transcriptome and physiology changes in indica rice ‘MH86’. Plant Growth Regulation. 2020;90(2):265-78. https://doi.org/10.1007/s10725-019-00569-0
  72. 72. Zhong Z, Zhong L, Zhu X, Jiang Y, Zheng Y, Lan T, et al. Transcription factor OsSPL10 interacts with OsJAmyb to regulate blast resistance in rice. The Crop Journal. 2024;12(1):301-7. https://doi.org/10.1016/j.cj.2023.10.015
  73. 73. Zhang L, He G, Li Y, Yang Z, Liu T, Xie X, et al. PIL transcription factors directly interact with SPLs and repress tillering/branching in plants. New Phytologist. 2022;233(3):1414-25. https://doi.org/10.1111/nph.17872
  74. 74. Ren L, Tang D, Zhao T, Zhang F, Liu C, Xue Z, et al. OsSPL regulates meiotic fate acquisition in rice. New Phytologist. 2018;218(2):789-803. https://doi.org/10.1111/nph.15017
  75. 75. Chavhan RL, Jaybhaye SG, Hinge VR, Deshmukh AS, Shaikh US, Jadhav PK, et al. Emerging applications of gene editing technologies for the development of climate-resilient crops. Frontiers in Genome Editing. 2025;7:1513729. https://doi.org/10.3389/fgeed.2025.1524767
  76. 76. Karavolias NG, Horner W, Abugu MN, Evanega SN. Application of gene editing for climate change in agriculture. Frontiers in Sustainable Food Systems. 2021;5:685801. https://doi.org/10.3389/fsufs.2021.685801
  77. 77. Kole C, Muthamilarasan M, Henry R, Edwards D, Sharma R, Abberton M, et al. Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Frontiers in Plant Science. 2015;6:563. https://doi.org/10.3389/fpls.2015.00563
  78. 78. Anilkumar C, Muhammed Azharudheen TP, Sah RP, Sunitha NC, Devanna BN, Marndi BC, et al. Gene-based markers improve precision of genome-wide association studies and accuracy of genomic predictions in rice breeding. Heredity. 2023;130(5):335-45. https://doi.org/10.1038/s41437-023-00599-5
  79. 79. Gupta A, Hua L, Zhang Z, Yang B, Li W. CRISPR-induced miRNA156-recognition element mutations in TaSPL13 improve multiple agronomic traits in wheat. Plant Biotechnology Journal. 2023;21(3):536-48. https://doi.org/10.1111/pbi.13969
  80. 80. Noh TH, Song ES, Kim HI, Kang MH, Park YJ. Transcriptome-based identification of differently expressed genes from Xanthomonas oryzae pv. oryzae strains exhibiting different virulence in rice varieties. International Journal of Molecular Sciences. 2016;17(2):259. https://doi.org/10.3390/ijms17020259
  81. 81. Liu M, Wang C, Ji Z, Lu J, Zhang L, Li C, et al. Regulation of drought tolerance in Arabidopsis involves the PLATZ4-mediated transcriptional repression of plasma membrane aquaporin PIP2;8. The Plant Journal. 2023;115(2):434-51. https://doi.org/10.1111/tpj.16235
  82. 82. Zhang LL, Huang YY, Zheng YP, Liu XX, Zhou SX, Yang XM, et al. Osa-miR535 targets SQUAMOSA promoter binding protein-like 4 to regulate blast disease resistance in rice. The Plant Journal. 2022;110(1):166-78. https://doi.org/10.1111/tpj.15663
  83. 83. Wei H, Zhao Y, Xie Y, Wang H. Exploiting SPL genes to improve maize plant architecture tailored for high-density planting. Journal of Experimental Botany. 2018;69(20):4675-88. https://doi.org/10.1093/jxb/ery258
  84. 84. Guha PK, Magar ND, Kommana M, Barbadikar KM, Suneel B, Gokulan C, et al. Strong culm: a crucial trait for developing next-generation climate-resilient rice lines. Physiology and Molecular Biology of Plants. 2024;30(4):665-86. https://doi.org/10.1007/s12298-024-01445-6
  85. 85. Wang L, Zhang Q. Boosting rice yield by fine-tuning SPL gene expression. Trends in Plant Science. 2017;22(8):643-6. https://doi.org/10.1016/j.tplants.2017.06.004
  86. 86. Hao L, Ruiying Q, Xiaoshuang L, Shengxiang L, Rongfang X, Jianbo Y, et al. CRISPR/Cas9-mediated adenine base editing in rice genome. Rice Science. 2019;26(2):125-8. https://doi.org/10.1016/j.rsci.2018.07.002
  87. 87. Hu L, Chen W, Yang W, Li X, Zhang C, Zhang X, et al. OsSPL9 regulates grain number and grain yield in rice. Frontiers in Plant Science. 2021;12:682018. https://doi.org/10.3389/fpls.2021.682018

Downloads

Download data is not yet available.