Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

Advancements in abiotic stress resistance in sorghum (Sorghum bicolor L.): Integrating genomics, breeding and agronomic innovation

DOI
https://doi.org/10.14719/pst.11252
Submitted
12 August 2025
Published
23-10-2025

Abstract

Sorghum (Sorghum bicolor) is highly resilient to abiotic stresses such as drought, heat, salinity, cold and nutrient deficiencies, making it an important crop for food security under changing climates. This adaptability is driven by morphological and physiological traits like deep root systems, stomatal regulation, osmotic adjustment and antioxidant defense, supported by molecular mechanisms involving stress-responsive genes and transcription factors such as DREB, NAC and LEA proteins. Advances in QTL mapping, GWAS, transcriptomics, proteomics and metabolomics have revealed key pathways and candidate genes for stress tolerance, while breeding approaches including marker-assisted selection, genomic selection and the use of wild relatives have enabled the development of stress-resilient lines with stable yields. Biotechnological tools such as CRISPR/Cas9, RNA interference and overexpression further offer precise genetic improvement. Together, these strategies are accelerating the creation of climate-smart sorghum varieties for sustainable agriculture. Future research should integrate multi-omics with machine learning to decipher complex stress-response networks and strengthen interdisciplinary collaborations to breed sorghum suited for diverse agro-ecological zones.

References

  1. 1. Kumar S, Milstein Y, Brami Y, Elbaum M, Elbaum R. Mechanism of silica deposition in Sorghum bicolor silica cells. New Phytol. 2017;213(2):791-8. https://doi.org/10.1111/nph.14173
  2. 2. De Wet JMJ. Systematics and evolution of Sorghum sect. Sorghum (Gramineae). Am J Bot. 1978;65(4):477-84. https://doi.org/10.1002/j.1537-2197.1978.tb06096.x
  3. 3. Harlan JR, De Wet JMJ. A simplified classification of cultivated Sorghum bicolor. Crop Sci. 1972;12(2):172-6. https://doi.org/10.2135/cropsci1972.0011183X001200020005x
  4. 4. Singh V, Van Oosterom EJ, Jordan DR, Messina CD, Cooper M, Hammer GL. Morphological and architectural development of root systems in Sorghum and Zea mays. Plant Soil. 2010;333(1-2):287-99. https://doi.org/10.1007/s11104-010-0343-0
  5. 5. Tu M, Du C, Yu B, Wang G, Deng Y, Wang Y, et al. Current advances in the molecular regulation of abiotic stress tolerance in Sorghum bicolor via transcriptomic, proteomic and metabolomic approaches. Front Plant Sci. 2023;14:1147328. https://doi.org/10.3389/fpls.2023.1147328
  6. 6. Zheng H, Dang Y, Diao X, Sui N. Molecular mechanisms of stress resistance in Sorghum bicolor: implications for crop improvement strategies. J Integr Agric. 2024;23(3):741-68. https://doi.org/10.1016/j.jia.2023.12.023
  7. 7. Abreha KB, Enyew M, Carlsson AS, Vetukuri RR, Feyissa T, Motlhaodi T, et al. Sorghum bicolor in dryland: morphological, physiological and molecular responses under drought stress. Planta. 2022;255(1):20. https://doi.org/10.1007/s00425-021-03799-7
  8. 8. Tawfik RS, El-Mouhamady ABA. Molecular genetic studies on abiotic stress resistance in sorghum entries through using half diallel analysis and inter-simple sequence repeat (ISSR) markers. Bull Natl Res Cent. 2019;43(1):117. https://doi.org/10.1186/s42269-019-0155-1
  9. 9. Srivastava AK, Riaz A, Jiang J, Li X, Uzair M, Mishra P, et al. Advancing climate-resilient Sorghum bicolor: the synergistic role of plant biotechnology and microbial interactions. Rice. 2025;18(1):41. https://doi.org/10.1186/s12284-025-00796-2
  10. 10. Lone R, Hassan N, Bashir B, Rohela GK, Malla NA. Role of growth elicitors and microbes in stress management and sustainable production of Sorghum bicolor. Plant Stress. 2023;9:100179. https://doi.org/10.1016/j.stress.2023.100179
  11. 11. Khalifa M, Eltahir EAB. Assessment of global Sorghum bicolor production, tolerance and climate risk. Front Sustain Food Syst. 2023;7:1184373. https://doi.org/10.3389/fsufs.2023.1184373
  12. 12. Widodo S, Purwaningsih H, Pustika AB, Widyayanti S, Muazam A, Hanifa AP, et al. Sorghum bicolor productivity and its farming feasibility in dryland agriculture: genotypic and planting distance insights. Phyton. 2024;93(5):1007-21. https://doi.org/10.32604/phyton.2024.048770
  13. 13. Luo L, Li X, Tan J, Liu W, Ye F, Hu Z. Progress on the effect of drought on Sorghum bicolor growth and its response mechanisms. Sch Acad J Biosci. 2024;12(07):205-8. https://doi.org/10.36347/sajb.2024.v12i07.004
  14. 14. Behera PP, Saharia N, Borah N, Devi SH, Sarma RN. Sorghum bicolor physiology and adaptation to abiotic stresses. Int J Environ Clim Change. 2022;12:1005-22. https://doi.org/10.9734/ijecc/2022/v12i1030891
  15. 15. Gidi M. Sorghum bicolor as a model crop for drought stress tolerance. Adv Bull Biol. 2023;11(3):14. https://doi.org/10.11648/j.abb.20231103.14
  16. 16. Prasad VBR, Govindaraj M, Djanaguiraman M, Djalovic I, Shailani A, Rawat N, et al. Drought and high temperature stress in Sorghum bicolor: physiological, genetic and molecular insights and breeding approaches. Int J Mol Sci. 2021;22(18):9826. https://doi.org/10.3390/ijms22189826
  17. 17. Krupa KN, Dalawai N, Shashidhar HE, Harinikumar KM, Manojkumar HB, Bharani S, et al. Mechanisms of drought tolerance in Sorghum bicolor: a review. Int J Pure Appl Biosci. 2017;5(4):221-37. https://doi.org/10.18782/2320-7051.2845
  18. 18. Watson-Lazowski A, Cano FJ, Kim M, Benning U, Koller F, George-Jaeggli B, et al. Multi-omic profiles of Sorghum bicolor genotypes with contrasting heat tolerance connect pathways related to thermotolerance. J Exp Bot. 2024;erae506. https://doi.org/10.1093/jxb/erae506
  19. 19. Ndlovu E, Van Staden J, Maphosa M. Morpho-physiological effects of moisture, heat and combined stresses on Sorghum bicolor (Moench) and its acclimation mechanisms. Plant Stress. 2021;2:100018. https://doi.org/10.1016/j.stress.2021.100018
  20. 20. Rajabi Dehnavi A, Zahedi M, Piernik A. Understanding salinity stress responses in Sorghum bicolor: exploring genotype variability and salt tolerance mechanisms. Front Plant Sci. 2024;14:1296286. https://doi.org/10.3389/fpls.2023.1296286
  21. 21. Mansour MMF, Emam MM, Salama KHA, Morsy AA. Sorghum bicolor under saline conditions: responses, tolerance mechanisms and management strategies. Planta. 2021;254(2):24. https://doi.org/10.1007/s00425-021-03671-8
  22. 22. Amombo E, Ashilenje D, Hirich A, Kouisni L, Oukarroum A, Ghoulam C, et al. Exploring the correlation between salt tolerance and yield: research advances and perspectives for salt-tolerant forage Sorghum bicolor selection and genetic improvement. Planta. 2022;255(3):71. https://doi.org/10.1007/s00425-022-03847-w
  23. 23. Liu C, Tian L, Yu W, Wang Y, Yao Z, Liu Y, et al. Natural variation in SbTEF1 contributes to salt tolerance in Sorghum bicolor seedlings. J Integr Agric. 2024;S2095311924001023. https://doi.org/10.1016/j.jia.2024.03.030
  24. 24. Ostmeyer TJ, Bahuguna RN, Kirkham MB, Bean S, Jagadish SVK. Enhancing Sorghum bicolor yield through efficient use of nitrogen - challenges and opportunities. Front Plant Sci. 2022;13:845443. https://doi.org/10.3389/fpls.2022.845443
  25. 25. Zhao D, Reddy KR, Kakani VG, Reddy VR. Nitrogen deficiency effects on plant growth, leaf photosynthesis and hyperspectral reflectance properties of Sorghum bicolor. Eur J Agron. 2005;22(4):391-403. https://doi.org/10.1016/j.eja.2004.06.005
  26. 26. Vera Hernández PF, Mendoza Onofre LE, Rosas Cárdenas FDF. Responses of Sorghum bicolor to cold stress: a review focused on molecular breeding. Front Plant Sci. 2023;14:1124335. https://doi.org/10.3389/fpls.2023.1124335
  27. 27. Ghosh PK, Sultana S, Keya SS, Nihad SAI, Shams SNU, Hossain MdS, et al. Ethanol-mediated cold stress tolerance in Sorghum bicolor seedlings through photosynthetic adaptation, antioxidant defense and osmoprotectant enhancement. Plant Stress. 2024;11:100401. https://doi.org/10.1016/j.stress.2024.100401
  28. 28. Sanjari S, Shobbar ZS, Ghanati F, Afshari-Behbahanizadeh S, Farajpour M, Jokar M, et al. Molecular, chemical and physiological analyses of Sorghum bicolor leaf wax under post-flowering drought stress. Plant Physiol Biochem. 2021;159:383-91. https://doi.org/10.1016/j.plaphy.2021.01.001
  29. 29. Alzahrani Y, Abdulbaki AS, Alsamadany H. Genotypic variability in stress responses of Sorghum bicolor under drought and salinity conditions. Front Genet. 2025;15:1502900. https://doi.org/10.3389/fgene.2024.1502900
  30. 30. Jin X, Long Y, Xiong S, Yang Z, Chen W, Hawar A, et al. SbNAC2 enhances abiotic stress tolerance by upregulating ROS scavenging activities and inducing stress-response genes in Sorghum bicolor. Environ Exp Bot. 2021;192:104664. https://doi.org/10.1016/j.envexpbot.2021.104664
  31. 31. Getachew F, Bayabil HK, Hoogenboom G, Kiker GA, Yu Z, Li Y. Development of climate-smart Sorghum bicolor ideotype for climate resilience in Ethiopia. Field Crops Res. 2023;303:109135. https://doi.org/10.1016/j.fcr.2023.109135
  32. 32. Fakrudin B, Lakshmidevamma TN, Ugalat J, Khan J, Gautham Suresh SP, Apoorva KA, et al. Advances in genomic designing for abiotic stress tolerance in Sorghum bicolor. In: Kole C, editor. Genomic designing for abiotic stress resistant cereal crops. Cham: Springer International Publishing; 2021. p. 193-221 https://doi.org/10.1007/978-3-030-75875-2_5
  33. 33. Kazemi H, Sabouri A, Aalami A, Abedi A. A comprehensive meta-analysis to identify the responsive genes in Sorghum bicolor under salinity and drought stresses. J Plant Growth Regul. 2023;42(11):7096-115. https://doi.org/10.1007/s00344-023-11000-4
  34. 34. Xu F, Park MR, Kitazumi A, Herath V, Mohanty B, Yun SJ, et al. Cis-regulatory signatures of orthologous stress-associated bZIP transcription factors from rice, sorghum and Arabidopsis based on phylogenetic footprints. BMC Genomics. 2012;13:497. https://doi.org/10.1186/1471-2164-13-497
  35. 35. Liu F, Wodajo B, Zhao K, Tang S, Xie Q, Xie P. Unravelling Sorghum bicolor functional genomics and molecular breeding: past achievements and future prospects. J Genet Genomics. 2025;52(6):719-32. https://doi.org/10.1016/j.jgg.2024.07.016
  36. 36. Mathur S, Priyadarshini SS, Singh V, Vashisht I, Jung KH, Sharma R, et al. Comprehensive phylogenomic analysis of ERF genes in Sorghum bicolor provides clues to the evolution of gene functions and redundancy among gene-family members. 3 Biotech. 2020;10(3):139. https://doi.org/10.1007/s13205-020-2120-y
  37. 37. Mwamahonje A, Eleblu JSY, Ofori K, Deshpande S, Feyissa T, Tongoona P. Drought tolerance and application of marker-assisted selection in Sorghum bicolor. Biology. 2021;10(12):1249. https://doi.org/10.3390/biology10121249
  38. 38. Kebede H, Subudhi PK, Rosenow DT, Nguyen HT. Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor Appl Genet. 2001;103(2-3):266-76. https://doi.org/10.1007/s001220100541
  39. 39. Crasta OR, Xu WW, Rosenow DT, Mullet J, Nguyen HT. Mapping of post-flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity. Mol Gen Genet. 1999;262(3):579-88. https://doi.org/10.1007/s004380051120
  40. 40. Hostetler AN, Govindarajulu R, Hawkins JS. QTL mapping in an interspecific sorghum population uncovers candidate regulators of salinity tolerance in Sorghum bicolor. Plant Stress. 2021;2:100024. https://doi.org/10.1016/j.stress.2021.100024
  41. 41. Min H, Wang K, Wang T, Cheng X, Habyarimana E, Wang Y, et al. Association mapping and candidate gene identification for drought tolerance in Sorghum bicolor. Front Plant Sci. 2025;16:1629615. https://doi.org/10.3389/fpls.2025.1629615
  42. 42. Ortiz D, Salas-Fernandez MG. Dissecting the genetic control of natural variation in Sorghum bicolor photosynthetic response to drought stress. J Exp Bot. 2022;73(10):3251-67. https://doi.org/10.1093/jxb/erab502
  43. 43. Varoquaux N, Cole B, Gao C, Pierroz G, Baker CR, Patel D, et al. Transcriptomic analysis of field-droughted Sorghum bicolor from seedling to maturity reveals biotic and metabolic responses. Proc Natl Acad Sci USA. 2019;116(52):27124-32. https://doi.org/10.1073/pnas.1907500116
  44. 44. Zhou W, Wang ZG, Li Y, Wu GJ, Li M, Deng ZL, et al. Comparative transcriptome and metabolome analysis reveals the differential response to salinity stress of two genotypes brewing Sorghum bicolor. Sci Rep. 2025;15(1):3365. https://doi.org/10.1038/s41598-025-87100-w
  45. 45. Yue L, Wang H, Shan Q, Kuerban Z, Mao H, Yu M. Metabolomic and transcriptomic analyses of drought-resistance mechanisms in Sorghum bicolor varieties. PeerJ. 2025;13:e19596. https://doi.org/10.7717/peerj.19596
  46. 46. Enyew M, Carlsson AS, Geleta M, Tesfaye K, Hammenhag C, Seyoum A, et al. Novel sources of drought tolerance in Sorghum bicolor landraces revealed via the analyses of genotype-by-environment interactions. Front Plant Sci. 2022;13:1062984. https://doi.org/10.3389/fpls.2022.1062984
  47. 47. Patroti P, Madhusudhana R, Sundaram S, Prasad GS, Raigond B, Das I, et al. Development of high-yielding and stress-resilient post-rainy-season Sorghum bicolor cultivars using a multi-parent crossing approach. Sci Rep. 2025;15(1):17224. https://doi.org/10.1038/s41598-025-02777-3
  48. 48. Somegowda VK, Diwakar Reddy SE, Gaddameedi A, Kiranmayee KNSU, Naravula J, Kavi Kishor PB, et al. Genomics breeding approaches for developing Sorghum bicolor lines with stress resilience and other agronomic traits. Curr Plant Biol. 2024;37:100314. https://doi.org/10.1016/j.cpb.2023.100314
  49. 49. Maulana F, Perumal R, Serba DD, Tesso T. Genomic prediction of hybrid performance in grain sorghum (Sorghum bicolor L.). Front Plant Sci. 2023;14:1139896. https://doi.org/10.3389/fpls.2023.1139896
  50. 50. Nagesh Kumar MV, Ramya V, Govindaraj M, Sameer Kumar CV, Maheshwaramma S, Gokenpally S, et al. Harnessing Sorghum bicolor landraces to breed high-yielding, grain-mold-tolerant cultivars with high protein for drought-prone environments. Front Plant Sci. 2021;12:659874. https://doi.org/10.3389/fpls.2021.659874
  51. 51. Char SN, Wei J, Mu Q, Li X, Zhang ZJ, Yu J, et al. An agrobacterium-delivered CRISPR/Cas9 system for targeted mutagenesis in Sorghum bicolor. Plant Biotechnol J. 2020;18(2):319-21. https://doi.org/10.1111/pbi.13229
  52. 52. Lee JS, Bae SJ, Kim JS, Kim C, Kang BC. A streamlined guide RNA screening system for genome editing in Sorghum bicolor. Plant Methods. 2023;19(1):90. https://doi.org/10.1186/s13007-023-01058-2
  53. 53. Elkonin LA, Gerashchenkov GA, Borisenko NV, Kenzhegulov OA, Sarsenova SKh, Rozhnova NA, et al. Development of Sorghum bicolor mutants with improved in vitro protein digestibility by CRISPR/Cas9 editing of kafirin genes. Crop J. 2023;11(5):1411-8. https://doi.org/10.1016/j.cj.2023.02.005
  54. 54. Saurabh S, Vidyarthi AS, Prasad D. RNA interference: concept to reality in crop improvement. Planta. 2014;239(3):543-64. https://doi.org/10.1007/s00425-013-2019-5
  55. 55. Borisenko N, Elkonin L, Kenzhegulov O. Inheritance of the genetic construct for RNA-silencing of the γ-kafirin gene (gKAF1) in the progeny of transgenic Sorghum bicolor plants. BIO Web Conf. 2022;43:03015. https://doi.org/10.1051/bioconf/20224303015
  56. 56. Gladman N, Olson A, Wei S, Chougule K, Lu Z, Tello-Ruiz M, et al. SorghumBase: a web-based portal for sorghum genetic information and community advancement. Planta. 2022;255(2):35. https://doi.org/10.1007/s00425-022-03821-6
  57. 57. Tian T, You Q, Zhang L, Yi X, Yan H, Xu W, et al. SorghumFDB: sorghum functional genomics database with multidimensional network analysis. Database. 2016;2016:baw099. https://doi.org/10.1093/database/baw099
  58. 58. Liu Y, Wang Z, Wu X, Zhu J, Luo H, Tian D, et al. SorGSD: updating and expanding the sorghum genome science database with new contents and tools. Biotechnol Biofuels. 2021;14(1):165. https://doi.org/10.1186/s13068-021-02016-7
  59. 59. Ware D. Gramene: a resource for comparative grass genomics. Nucleic Acids Res. 2002;30(1):103-5. https://doi.org/10.1093/nar/30.1.103
  60. 60. Priya P, Patil M, Pandey P, Singh A, Babu VS, Senthil-Kumar M. Stress combinations and their interactions in plants database: a one-stop resource on combined stress responses in plants. Plant J. 2023;116(4):1097-117. https://doi.org/10.1111/tpj.16497
  61. 61. Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, et al. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004;37(6):914-39. https://doi.org/10.1111/j.1365-313X.2004.02016.x
  62. 62. Kanehisa M, Sato Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 2020;29(1):28-35. https://doi.org/10.1002/pro.3711
  63. 63. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8
  64. 64. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-504. https://doi.org/10.1101/gr.1239303
  65. 65. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139-40. https://doi.org/10.1093/bioinformatics/btp616
  66. 66. Baloch FS, Altaf MT, Liaqat W, Bedir M, Nadeem MA, Cömertpay G, et al. Recent advancements in the breeding of sorghum crop: current status and future strategies for marker-assisted breeding. Front Genet. 2023;14:1150616. https://doi.org/10.3389/fgene.2023.1150616
  67. 67. Silva TN, Thomas JB, Dahlberg J, Rhee SY, Mortimer JC. Progress and challenges in Sorghum bicolor biotechnology, a multipurpose feedstock for the bioeconomy. J Exp Bot. 2022;73(3):646-64. https://doi.org/10.1093/jxb/erab450
  68. 68. Hao H, Li Z, Leng C, Lu C, Luo H, Liu Y, et al. Sorghum breeding in the genomic era: opportunities and challenges. Theor Appl Genet. 2021;134(7):1899-24. https://doi.org/10.1007/s00122-021-03789-z
  69. 69. Wang Y, Li D, Liu C, Shi X, Huang Y, Liu C, et al. Screening and identification of grain Sorghum bicolor germplasm for salt tolerance at seedling stage. Front Plant Sci. 2025;16:1610685. https://doi.org/10.3389/fpls.2025.1610685

Downloads

Download data is not yet available.