Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Enhancing resistance to finger millet blast using traditional and molecular approaches and outlook for future possibilities

DOI
https://doi.org/10.14719/pst.11267
Submitted
14 August 2025
Published
02-01-2026

Abstract

The biodiversity of agricultural pests and diseases has changed significantly due to climate change, posing an immense challenge to sustainable crop production. Finger millet, the third most important millet, is typically cultivated in arid, semi-arid, hilly and tribal provinces across Africa and Asia. However, its growth and yield are severely threatened by blast disease, a destructive condition caused by the filamentous ascomycete fungus Magnaporthe grisea. Because the pathogen produces rapidly evolving virulence genes, blast resistance frequently breaks down, leading to yield instability in all provinces where finger millet is cultivated. Blast disease is estimated to reduce yield by 28 %–36 % on average and in extreme cases, it can result in total crop loss. The disease affects the crop in three progressive stages: leaf blast, neck blast and finger blast. In comparison to leaf blast, the loss is higher in neck blast and finger blast, which drastically decrease grain size and number and in extreme cases, this results in total panicle sterility. In this current review, we emphasized the significance of finger millet and its susceptibility to blast disease, pathogen, field screening technique, genetic resources available at different research organizations involved in the advancement of finger millet in the world, genetic diversity of blast pathogen, conventional and molecular tools like transcriptome analysis and transgenesis that have been employed to increase finger millet's resistance to blast disease and explored prospective future paths for the creation of new blast-resistant finger millet cultivars.

References

  1. 1. Chandrashekar A. Finger millet: Eleusine coracana. Adv Food Nutr Res. 2010;59:215–62.
  2. https://doi.org/10.1016/S1043-4526(10)59006-5
  3. 2. Goron TL, Bhosekar VK, Shearer CR, Watts S, Raizada MN. Whole plant acclimation responses by finger millet to low nitrogen stress. Front Plant Sci. 2015;6:652. https://doi.org/10.3389/fpls.2015.00652
  4. 3. Bisht MS, Mukai Y. Genomic in situ hybridization identifies genome donor of finger millet (Eleusine coracana). Theor Appl Genet. 2001;102:825–32. https://doi.org/10.1007/s001220000497
  5. 4. Saha D, Gowda MC, Arya L, Verma M, Bansal KC. Genetic and genomic resources of small millets. Crit Rev Plant Sci. 2016;35(1):56–79. https://doi.org/10.1080/07352689.2016.1147907
  6. 5. Hiremath SC, Salimath SS. The “A” genome donor of Eleusine coracana (L.) Gaertn. Theor Appl Genet. 1992;84:747–54.
  7. 6. Babu K, Sood S, Agrawal PK, Chandrashekara C, Kumar A, Kumar A. Molecular and phenotypic characterization of 149 finger millet accessions using microsatellite and agro-morphological markers. Proc Natl Acad Sci India Sect B Biol Sci. 2017;87:1217–28. https://doi.org/10.1007/s40011-015-0695-6
  8. 7. Devos KM, Qi P, Bahri BA, Gimode DM, Jenike K, Manthi SJ, et al. Genome analyses reveal population structure and a purple stigma color gene candidate in finger millet. Nat Commun. 2023;14(1):3694. https://doi.org/10.1038/s41467-023-38915-6
  9. 8. Hittalmani S, Mahesh HB, Shirke MD, Biradar H, Uday G, Aruna YR, et al. Genome and transcriptome sequence of finger millet (Eleusine coracana) provides insights into drought tolerance and nutraceutical properties. BMC Genomics. 2017;18:465. https://doi.org/10.1186/s12864-017-3850-x
  10. 9. Hilu KW. Identification of the “A” genome of finger millet using chloroplast DNA. Genetics. 1988;118(1):163–7.
  11. 10. Backiyalakshmi C, Vetriventhan M, Deshpande S, Babu C, Allan V, Naresh D, et al. Genome-wide assessment of population structure and genetic diversity of the global finger millet germplasm panel conserved at the ICRISAT Genebank. Front Plant Sci. 2021;12:692463. https://doi.org/10.3389/fpls.2021.692463
  12. 11. Meena L, Buvaneswaran M, Byresh TS, Sunil CK, Rawson A, Venkatachalapathy N. Effect of ultrasound treatment on white finger millet-based probiotic beverage. Meas Food. 2023;10:100090. https://doi.org/10.1016/j.measurement.2023.100090
  13. 12. Sood S, Joshi DC, Rajashekara H, Tiwari A, Bhinda MS, Kumar A, et al. Deciphering the genomic regions governing major agronomic traits and blast resistance using genome-wide association mapping in finger millet. Gene. 2023;854:147115. https://doi.org/10.1016/j.gene.2023.147115
  14. 13. Sood S, Joshi DC, Chandra AK, Kumar A. Phenomics and genomics of finger millet: Current status and future prospects. Planta. 2019;250:731–51. https://doi.org/10.1007/s00425-019-03181-8
  15. 14. Kheya SA, Talukder SK, Datta P, Yeasmin S, Rashid MH, Hasan AK, et al. Millets: The future crops for the tropics-Status, challenges and future prospects. Heliyon. 2023:e18692. https://doi.org/10.1016/j.heliyon.2023.e18692
  16. 15. Gebreyohannes A, Shimelis H, Laing M, Mathew I, Odeny DA, Ojulong H. Finger millet production in Ethiopia: opportunities, challenges and recommendations for breeding. Sustainability. 2021;13(23):13463. https://doi.org/10.3390/su132313463
  17. 16. Das IK, Palanna KB, Patro TSSK, Ganapathy KN, Kannababu N, Kumar S, et al. Multilocational evaluation of blast resistance in finger millet. Crop Prot. 2021;139:105401. https://doi.org/10.1016/j.cropro.2020.105401
  18. 17. Li X, Gao J, Song J, Guo K, Hou S, Wang X, et al. Multi-omics analyses of foxtail millet reveal genomic regions associated with domestication and metabolite traits. Mol Plant. 2022;15(8):1367–83. https://doi.org/10.1016/j.molp.2022.05.014
  19. 18. Banshidhar, Pandey S, Singh A, Jaiswal P, Singh MK, Meena KR, et al. Potentialities of omics resources for millet improvement. Funct Integr Genomics. 2023;23(3):210. https://doi.org/10.1007/s10142-023-01044-2
  20. 19. Gupta SM, Arora S, Mirza N, Pande A, Lata C, Puranik S, et al. Finger millet: a “certain” crop for an “uncertain” future. Front Plant Sci. 2017;8:643. https://doi.org/10.3389/fpls.2017.00643
  21. 20. Manyasa EO, Tongoona P, Shanahan P, Githiri S, Ojulong H, Njoroge SM. Exploiting genetic diversity for blast resistance in finger millet. Plant Health Prog. 2019;20(3):180–6. https://doi.org/10.1094/PHP-01-19-0008-R
  22. 21. Mbinda W, Masaki H. Breeding strategies and challenges in improving blast resistance in finger millet. Front Plant Sci. 2021;11:602882. https://doi.org/10.3389/fpls.2020.602882
  23. 22. Rasool A, Shah WH, Tahir I, Alharby HF, Hakeem KR, Rehman R. Selenium mitigates NaCl stress in millets. Acta Physiol Plant. 2020;42:1–13. https://doi.org/10.1007/s11738-020-03101-4
  24. 23. Babu TK, Thakur RP, Upadhyaya HD, Reddy PN, Sharma R, Girish AG, et al. Resistance to blast in finger millet mini-core collection. Eur J Plant Pathol. 2013;135:299–311. https://doi.org/10.1007/s10658-012-0100-8
  25. 24. Yoshida K, Saunders DG, Mitsuoka C, Natsume S, Kosugi S, Saitoh H, et al. Host specialization of Magnaporthe oryzae. BMC Genomics. 2016;17:1–18. https://doi.org/10.1186/s12864-015-2324-8
  26. 25. Mentlak TA, Kombrink A, Shinya T, Ryder LS, Otomo I, Saitoh H, et al. Effector-mediated suppression of immunity by Magnaporthe oryzae. Plant Cell. 2012;24(1):322–35.
  27. 26. Galhano R, Talbot NJ. The biology of blast fungus invasion. Fungal Biol Rev. 2011;25(1):61–7.
  28. 27. Park SY, Jeong EW, Yang YS, Kim HJ, Go GW, Lee HG. Finger millet ethanol extracts prevent hypertension. Antioxidants. 2021;10(11):1766. https://doi.org/10.3390/antiox10111766
  29. 28. Upadhyaya HD, Gowda CLL, Pundir RPS, Reddy VG, Singh S. Development of a core subset of finger millet germplasm. Genet Resour Crop Evol. 2006;53:679–85. https://doi.org/10.1007/s10722-005-0247-2
  30. 29. Vetriventhan M, Azevedo VC, Upadhyaya HD, Nirmalakumari A, Kane-Potaka J, Anitha S, et al. Genetic and genomic resources of small millets. Nucleus. 2020;63:217–39. https://doi.org/10.1007/s13237-020-00327-z
  31. 30. Upadhyaya HD, Ramesh S, Sharma S, Singh SK, Varshney SK, Sarma NDRK, et al. Genetic diversity for grain nutrients in finger millet. Field Crops Res. 2011;121(1):42–52. https://doi.org/10.1016/j.fcr.2011.02.011
  32. 31. Ghatak A, Chaturvedi P, Weckwerth W. Cereal crop proteomics: Systemic analysis of crop drought stress responses towards marker-assisted selection breeding. Front Plant Sci. 2017;8:757.
  33. 32. Pall BS. Biochemical studies of pathogenesis of finger millet blast. Res Dev Rep. 1994;11(1–2):43–7.
  34. 33. Mentlak TA, Kombrink A, Shinya T, Ryder LS, Otomo I, Saitoh H, et al. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell. 2012;24(1):322–35.
  35. 34. Galhano R, Talbot NJ. The biology of blast: Understanding how Magnaporthe oryzae invades rice plants. Fungal Biol Rev. 2011;25(1):61–7.
  36. 35. Gashaw G, Alemu T, Tesfaye K. Morphological, physiological and biochemical studies on Pyricularia grisea isolates causing blast disease on finger millet in Ethiopia. J Appl Biosci. 2014;74:6059–71.
  37. 36. Park SY, Jeong EW, Yang YS, Kim HJ, Go GW, Lee HG. Finger millet ethanol extracts prevent hypertension by inhibiting the angiotensin-converting enzyme level and enhancing antioxidant capacity in spontaneously hypertensive rats. Antioxidants. 2021;10(11):1766. https://doi.org/10.3390/antiox10111766
  38. 37. Babu K, Thakur RP, Reddy RP, Upadhyaya HD, Girish AG, Sarma NDRK. Development of a field screening technique and identification of blast resistance in finger millet core collection. Indian J Plant Prot. 2012;40(1):45–51.
  39. 38. Upadhyaya HD, Gowda CLL, Pundir RPS, Reddy VG, Singh S. Development of core subset of finger millet germplasm using geographical origin and data on 14 quantitative traits. Genet Resour Crop Evol. 2006;53:679–85.
  40. https://doi.org/10.1007/s10722-005-0247-2
  41. 39. Vetriventhan M, Azevedo VC, Upadhyaya HD, Nirmalakumari A, Kane-Potaka J, Anitha S, et al. Genetic and genomic resources and breeding for accelerating improvement of small millets: Current status and future interventions. Nucleus. 2020;63:217–39. https://doi.org/10.1007/s13237-020-00327-z
  42. 40. Dwivedi SL, Hari D, Upadhyaya, Senapathy SC, Fukunaga K, Diao X, Santra D, Baltensperger D, Prasad M. Millets: Genetic and genomic resources. Plant Breed Rev. 2012:247–75. https://doi.org/10.1002/9781118351498.ch6
  43. 41. Upadhyaya HD, Ramesh S, Sharma S, Singh SK, Varshney SK, Sarma NDRK, et al. Genetic diversity for grain nutrient contents in a core collection of finger millet (Eleusine coracana (L.) Gaertn.) germplasm. Field Crops Res. 2011;121(1):42–52. https://doi.org/10.1016/j.fcr.2011.02.011
  44. 42. Mgonja M, Audi P, Mgonja AP, Manyasa EO, Ojulong O. Integrated blast and weed management and microdosing in finger millet: A HOPE project manual for increasing finger millet productivity. 2013.
  45. 43. Ojha I, Kamaluddin, Sharma V, Tariq M, Jain M, Negi HS, et al. Identification of blast-resistant finger millet (Eleusine coracana L.) genotype through phenotypic screening and molecular profiling. Sci Rep. 2024;14(1):32080. https://doi.org/10.1038/s41598-024-54096-7
  46. 44. Valarmathi M, Sasikala R, Rahman H, Jagadeeshselvam N, Kambale R, Raveendran M. Development of salinity-tolerant version of a popular rice variety, Improved White Ponni through marker-assisted backcross breeding. Plant Physiol Rep. 2019;24:262–71.
  47. 45. Chen XW, Li SG, Ma YQ, Li HY, Zhou KD, Zhu LH. Marker-assisted selection and pyramiding for three blast resistance genes, Pi-d(t)1, Pi-b, Pi-ta2, in rice. Chin J Biotechnol. 2004;20:708–14.
  48. 46. Ponnuswamy R, Singh AK, Raman MS, Subbarao LV. Conversion of partial restorer Swarna into restorer by transferring fertility restorer Rf gene(s) through marker-assisted backcross breeding in rice. Sci Rep. 2020;10(1):58088.
  49. https://doi.org/10.1038/s41598-020-58088-1
  50. 47. Ganapathy KN. Improvement in finger millet: Status and future prospects. In: Millets and Sorghum: Biology and Genetic Improvement. 2017:87–111.
  51. 48. Kalarani MK, Thangaraj M, Sivakumar R, Mallika V. Effects of salicylic acid on tomato (Lycopersicon esculentum Mill.) productivity. Crop Res Hisar. 2002;23(3):486–92.
  52. 49. Eswari K, Gogulan G, Hari Prathab KA, Sakila M. Development of early maturing mutants in finger millet. Res J Agric For Sci. 2014;2:60–63.
  53. 50. Tikka SBS. Mutation research in finger millet. New Delhi: Sharda Publication; 1985. p. 1–55.
  54. 51. Devkota RN. Genetic variability and character association in first and second cycle mutant lines of a white ragi cultivar. M.Sc. (Ag.) Thesis. Bhubaneswar: Orissa University of Agriculture and Technology; 1987.
  55. 52. Raveendran TS, Meenakshi K, Appadurai R. Induced polygenic mutation in ragi (Eleusine coracana (L.) Gaertn.). Madras Agric J. 1982.
  56. 53. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990;18(22):6531–5. https://doi.org/10.1093/nar/18.22.6531
  57. 54. Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 1990;18(24):7213–8. https://doi.org/10.1093/nar/18.24.7213
  58. 55. Gupta PK, Varshney RK. The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica. 2000;113(3):163–85. https://doi.org/10.1023/A:1003910819967
  59. 56. Kim HS, Ward RW. Patterns of RFLP-based genetic diversity in germplasm pools of common wheat with different geographical or breeding program origins. Euphytica. 2000;115:197–208. https://doi.org/10.1023/A:1003954626239
  60. 57. Suzuki T, Sato M, Takeuchi T. Evaluation of the effects of five QTL regions on Fusarium head blight resistance and agronomic traits in spring wheat (Triticum aestivum L.). Breed Sci. 2012;62(1):11–7. https://doi.org/10.1270/jsbbs.62.11
  61. 58. Viji G, Gnanamanickam SS, Levy M. DNA polymorphisms of isolates of Magnaporthe grisea from India that are pathogenic to finger millet and rice. Mycol Res. 2000;104(2):161–7. https://doi.org/10.1017/S0953756299001706
  62. 59. Rathour R, Singh BM, Sharma TR, Chauhan RS. Population structure of Magnaporthe grisea from north-western Himalayas and its implications for blast resistance breeding of rice. J Phytopathol. 2004;152(5):304–12. https://doi.org/10.1111/j.1439-0434.2004.00846.x
  63. 60. Zheng Y, Zhang G, Lin F, Wang Z, Jin G, Yang L, et al. Development of microsatellite markers and construction of genetic map in rice blast pathogen Magnaporthe grisea. Funct Integr Genomics. 2008;45(10):1340–7. https://doi.org/10.1007/s10142-008-0084-2
  64. 61. Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature. 2005;434(7036):980–6. https://doi.org/10.1038/nature03449
  65. 62. Sonah H, Deshmukh RK, Parida SK, Chand S, Kotasthane A. Morphological and genetic variation among different isolates of Magnaporthe grisea collected from Chhattisgarh. Indian Phytopathol. 2009;62(4):469.
  66. 63. Palanna KB, Vinaykumar HD, Rajashekara H, Devanna BN, Anilkumar C, Jeevan B, et al. Exploring the diversity of virulence genes in the Magnaporthe population infecting millets and rice in India. Front Plant Sci. 2023;14:1131315. https://doi.org/10.3389/fpls.2023.1131315
  67. 64. Babujee L, Gnanamanickam SS. Molecular tools for characterization of rice blast pathogen (Magnaporthe grisea) population and molecular marker-assisted breeding for disease resistance. Curr Sci. 2000;78(3):248–57.
  68. 65. Kelly JD, Miklas PN. The role of molecular markers in breeding for qualitative and quantitative traits of common bean. Cali: CIAT; 1997. p. 262–79.
  69. 66. Kumar A, Kalyana Babu B, Yadav S, Agrawal PK. Allele mining for resistance gene analogs (RGAs) in crop plants: special emphasis on blast resistance in finger millet (Eleusine coracana L.). Indian J Genet. 2016;76:1–9. https://doi.org/10.5958/0975-6906.2016.00001.8
  70. 67. Migicovsky Z, Myles S. Exploiting wild relatives for genomics-Assisted breeding of perennial crops. Front Plant Sci. 2017;8:460.
  71. 68. Kalyana Babu B, Agrawal PK, Pandey D, Jaiswal JP, Kumar A. Association mapping of agro-morphological characters among the global collection of finger millet genotypes using genomic SSR markers. Mol Biol Rep. 2014;41:5287–97.
  72. 69. Panwar P, Jha AK, Pandey PK, Gupta AK, Kumar A. Functional marker-based molecular characterization and cloning of resistance gene analogs encoding NBS-LRR disease resistance proteins in finger millet (Eleusine coracana). Mol Biol Rep. 2011;38:3427–36.
  73. 70. Kumar A, Metwal M, Kaur S, Gupta AK, Puranik S, Singh S, et al. Nutraceutical value of finger millet [Eleusine coracana (L.) Gaertn.] and their improvement using omics approaches. Front Plant Sci. 2016;7:934.
  74. 71. Hiremath C, Gowda J. SSR-based genetic diversity in blast-resistant and susceptible accessions of finger millet (Eleusine coracana L.). Electron J Plant Breed. 2018;9(2):400–8.
  75. 72. Girma G, Nida H, Tirfessa A, Lule D, Bejiga T, Seyoum A, et al. A comprehensive phenotypic and genomic characterization of Ethiopian sorghum germplasm defines core collection and reveals rich genetic potential in adaptive traits. Plant Genome. 2020;13(3):e20055.
  76. 73. Babu BK, Agrawal PK, Pandey D, Kumar A. Comparative genomics and association mapping approaches for opaque2 modifier genes in finger millet accessions using genic, genomic and candidate gene-based SSR markers. Mol Breed. 2014;34:1261–79.
  77. 74. Maharajan T, Ajeesh Krishna TP, Rakkammal K, Ramakrishnan M, Ceasar SA, Ramesh M, Ignacimuthu S. Identification of QTL associated with agro-morphological and phosphorus content traits in finger millet under differential phosphorus supply via linkage mapping. Agriculture. 2023;13(2):262.
  78. 75. Dida G. Molecular markers in breeding of crops: Recent progress and advancements. J Microbiol Biotechnol. 2022;7(4).
  79. 76. Rustogi S, Gupta A. Modeling the dynamic behavior of electrical cabinets and control panels: Experimental and analytical results. J Struct Eng. 2004;130(3):511–9.
  80. 77. Shrawat AK, Lörz H. Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Biotechnol J. 2006;4(6):575–603.
  81. 78. Gupta P, Raghuvanshi S, Tyagi AK. Assessment of the efficiency of various gene promoters via biolistics in leaf and regenerating seed callus of millets, Eleusine coracana and Echinochloa crusgalli. Plant Biotechnol. 2001;18(4):275–82.
  82. 79. Latha AM, Rao KV, Reddy VD. Production of transgenic plants resistant to leaf blast disease in finger millet (Eleusine coracana (L.) Gaertn.). Plant Sci. 2005;169:657–67. https://doi.org/10.1016/j.plantsci.2005.05.009
  83. 80. Jagga-Chugh S, Kachhwaha S, Sharma M, Kothari-Chajer A, Kothari SL. Optimization of factors influencing microprojectile bombardment-mediated genetic transformation of seed-derived callus and regeneration of transgenic plants in Eleusine coracana (L.) Gaertn. Plant Cell Tissue Organ Cult. 2012;109:401–10. https://doi.org/10.1007/s11240-011-0104-7
  84. 81. Ignacimuthu S, Ceasar SA. Development of transgenic finger millet (Eleusine coracana (L.) Gaertn.) resistant to leaf blast disease. J Biosci. 2012;37:135–47.
  85. 82. Sharma M, Kothari-Chajer A, Jagga-Chugh S, Kothari SL. Factors influencing Agrobacterium tumefaciens-mediated genetic transformation of Eleusine coracana (L.) Gaertn. Plant Cell Tissue Organ Cult. 2011;105:93–104.
  86. https://doi.org/10.1007/s11240-010-9846-x
  87. 83. Mirza N, Marla SS. Finger millet (Eleusine coracana L. Gaertn.) breeding. In: Advances in Plant Breeding Strategies: Cereals. 2019;5:83–132.
  88. 84. Radjacommare R, Kandan A, Nandakumar R, Samiyappan R. Association of the hydrolytic enzyme chitinase against Rhizoctonia solani in rhizobacteria-treated rice plants. J Phytopathol. 2004;152(6):365–70. https://doi.org/10.1007/s11032-010-9433-1
  89. 85. Manyasi JT, Kimurto PK, Mafurah JJ. Genetic resistance to blast disease in finger millet genotypes under greenhouse conditions. East Afr Agric For J. 2022;86(1–2):10.
  90. 86. Ding L, Xu X, Kong W, Xia X, Zhang S, Liu LW, Liu A, Zou L. Genome-wide identification and expression analysis of rice NLR genes responsive to the infections of Xanthomonas oryzae pv. oryzae and Magnaporthe oryzae. Physiol Mol Plant Pathol. 2020;111:101488. https://doi.org/10.1016/j.pmpp.2020.101488
  91. 87. Tadele Z, Esfeld K, Plaza S. Applications of high-throughput techniques to the understudied crops of Africa. Aspects Appl Biol. 2010;96.
  92. 88. Wolf JB. Principles of transcriptome analysis and gene expression quantification: An RNA-seq tutorial. Mol Ecol Resour. 2013;13(4):559-72. https://doi.org/10.1111/1755-0998.12109
  93. 89. de Oliveira Dal’Molin CG, Orellana C, Gebbie L, Steen J, Hodson MP, Chrysanthopoulos P, et al. Metabolic reconstruction of Setaria italica: A systems biology approach for integrating tissue-specific omics and pathway analysis of bioenergy grasses. Front Plant Sci. 2016;7:1138. https://doi.org/10.3389/fpls.2016.01138
  94. 90. Rajaram V, Nepolean T, Senthilvel S, Varshney RK, Vadez V, Srivastava RK, et al. Pearl millet [Pennisetum glaucum (L.) R. Br.] consensus linkage map constructed using four RIL mapping populations and newly developed EST-SSRs. BMC Genomics. 2013;14(1):1–16.
  95. 91. Wang T, Xing L, Song H, Wei Y, Li P, Lu Q, et al. Large-scale metabolome analysis reveals dynamic changes of metabolites during foxtail millet grain filling. Food Res Int. 2023;165:112516. https://doi.org/10.1016/j.foodres.2023.112513
  96. 92. Jaiswal V, Gupta S, Gahlaut V, Muthamilarasan M, Bandyopadhyay T, Ramchiary N, Prasad M. Genome-wide association study of major agronomic traits in foxtail millet (Setaria italica L.) using ddRAD sequencing. Sci Rep. 2019;9(1):5020.
  97. 93. Johnson M, Deshpande S, Vetriventhan M, Upadhyaya HD, Wallace JG. Genome-wide population structure analyses of three minor millets: kodo millet, little millet and proso millet. Plant Genome. 2019;12(3):499087.
  98. 94. Rahman H, Jagadeeshselvam N, Valarmathi R, Sachin B, Sasikala R, Senthil N, et al. Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet (Eleusine coracana L.) through RNA-sequencing. Plant Mol Biol. 2014;85:485–503. https://doi.org/10.1007/s11103-014-0199-4
  99. 95. Mirza N, Taj G, Arora S, Kumar A. Transcriptional expression analysis of genes involved in regulation of calcium translocation and storage in finger millet (Eleusine coracana L. Gaertn.). Gene. 2014;550(2):171–9.
  100. 96. Kussmann M, Raymond F, Affolter M. OMICS-driven biomarker discovery in nutrition and health. J Biotechnol. 2006;124(4):758–87.
  101. 97. Singh S, Parihar P, Singh R, Singh VP, Prasad SM. Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics and ionomics. Front Plant Sci. 2016;6:1143.
  102. 98. Pan J, Li Z, Dai S, Ding H, Wang Q, Li X, et al. Integrative analyses of transcriptomics and metabolomics upon seed germination of foxtail millet in response to salinity. Sci Rep. 2020;10(1):13660. https://doi.org/10.1038/s41598-020-70520-1
  103. 99. Banshidhar, Pandey S, Singh A, Jaiswal P, Singh MK, Meena KR, Singh SK. The potentialities of omics resources for millet improvement. Funct Integr Genomics. 2023;23(3):210.

Downloads

Download data is not yet available.