Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Phenological response of olive cultivars to inter-annual temperature variability in Morocco

DOI
https://doi.org/10.14719/pst.11295
Submitted
16 August 2025
Published
13-02-2026

Abstract

Climatic factors strongly influence the phenology of olive trees, with flowering time responding sensitively to temperature variations. This study investigated the effects of inter-annual temperature variability on olive phenology in a mountainous Mediterranean region of Morocco. Experiments were conducted over two contrasting seasons (2020–2021 and 2021–2022) on four cultivars (Picholine Marocaine, Haouzia, Dahbia and Arbequina) in Khenifra. Forcing tests were performed to determine endodormancy release dates and to estimate chill and heat requirements. Throughout the dormancy period, fresh flower bud weights were recorded before and after a 7-day forcing period at weekly intervals and bud water content was monitored. The climatic requirements of each cultivar represent a major determinant of adaptability under variable seasonal conditions. The results revealed clear inter-cultivar differences in endodormancy and ecodormancy durations, thermal requirements and flowering dates. Arbequina exhibited the earliest dormancy release with relatively low chill requirements, whereas Picholine Marocaine and Dahbia flowered later and required higher chill accumulation. In all cultivars, bud growth activity increased near the time of dormancy release, indicated by water content exceeding 30 %, with only minor genotypic variation in the transition between dormancy phases. Across both seasons, flowering occurred after heat accumulation ranging from 6774 to 8051 Growing Degree Hours (GDH). These findings suggest that co-planting Picholine Marocaine and Dahbia may improve cross-pollination and enhance yield potential due to their similar flowering responses to seasonal temperature patterns. Overall, this research provides valuable insights for cultivar selection and orchard management under variable climatic conditions in Mediterranean environments.

References

  1. 1. Boulouha B, Loussert R, Saadi R. Phenotypic variation of the ‘Picholine Marocaine’ olive cultivar in the Haouz region. Olivæ. 1992;30–3.
  2. 2. Khadari B, Charafi J, Abdelmajid M, Ater M. Substantial genetic diversity in cultivated Moroccan olive despite a single major cultivar: A paradoxical situation evidenced by the use of SSR loci. Tree Genet Genomes. 2008;4:213–21. https://doi.org/10.1007/s11295-007-0102-4
  3. 3. Hackett WP, Hartmann HT. The influence of temperature on floral initiation in the olive. Physiol Plant. 1967;20:430–6. https://doi.org/10.1111/j.1399-3054.1967.tb07183.x
  4. 4. Colbrant P, Fabre P. Reference developmental stages of the olive tree. Olivæ. Paris: INVUFLEC, R Maillard; 1975. p. 24–5.
  5. 5. Rallo L, Martin GC. The role of chilling in releasing olive floral buds from dormancy. J Am Soc Hortic Sci. 1991;116:1058–62. https://doi.org/10.21273/JASHS.116.6.1058
  6. 6. Fernandez-Escobar R, Benlloch M, Navarro C, Martin GC. The time of floral induction in the olive. J Am Soc Hortic Sci. 1992;117:304–7. https://doi.org/10.21273/JASHS.117.2.304
  7. 7. Dennis FG. Dormancy-what we know (and don’t know). HortScience. 1994;29:1249–55. https://doi.org/10.21273/HORTSCI.29.11.1249
  8. 8. Lang GA. Dormancy: A new universal terminology. HortScience. 1987;22:817–20. https://doi.org/10.21273/HORTSCI.22.5.817
  9. 9. Rohde A, Bhalerao R. Plant dormancy in the perennial context. Trends Plant Sci. 2007;12:217–23. https://doi.org/10.1016/j.tplants.2007.03.012
  10. 10. Badr SA, Hartmann HT. Effect of diurnally fluctuating vs constant temperatures on flower induction and sex expression in the olive (Olea europaea). Physiol Plant. 1971;24:40–5. https://doi.org/10.1111/j.1399-3054.1971.tb06712.x
  11. 11. Belguerri H. Effect of irrigation and nitrogen/potassium fertilization on productivity and fruit quality in super-intensive olive orchards [PhD thesis]. Lleida: Univ. de Lleida; 2016. https://www.tdx.cat/handle/10803/385736
  12. 12. Lavee S. Biology and physiology of the olive tree. In: World encyclopedia of the olive. Barcelona: Plaza & Janés; 1996. p. 59–110.
  13. 13. Ouksili A. Floral biology of olive (Olea europaea L.) from flower initiation to effective pollination. Montpellier: Univ. des Sciences et Technologies du Languedoc; 1983.
  14. 14. Malik NSA, Bradford JM. Changes in oleuropein levels during differentiation and development of floral buds in ‘Arbequina’ olives. Sci Hortic. 2006;110:274–8. https://doi.org/10.1016/j.scienta.2006.07.016
  15. 15. Mataix J, Barbancho FJ. Olive oil in Mediterranean food. In: Quiles JL, Ramírez-Tortosa MC, Yaqoob P, editors. Olive oil and health. Wallingford: CABI; 2006. p. 1–44. https://doi.org/10.1079/9781845930684.0001
  16. 16. Loussert R, Brousse G. The olive tree. Paris: Techniques Agricoles; 1978.
  17. 17. Maracchi G, Pittalis F, Bindi M, Sillari B. Olive production and meteorological factors: A preliminary study. Olivæ. 1994;30–7.
  18. 18. Garcia-Mozo H, Orlandi F, Galan C, Fornaciari M, Romano B, Ruiz L, et al. Olive flowering phenology variation between different cultivars in Spain and Italy: Modeling analysis. Theor Appl Climatol. 2009;95:385–95. https://doi.org/10.1007/s00704-008-0016-6
  19. 19. De Melo-Abreu J. Modelling olive flowering date using chilling for dormancy release and thermal time. Agric For Meteorol. 2004;125:117–27. https://doi.org/10.1016/j.agrformet.2004.02.009
  20. 20. Elloumi O, Ghrab M, Chatti A, Chaari A, Ben Mimoun M. Phenological performance of olive tree in a warm production area of central Tunisia. Sci Hortic. 2020;259:108759. https://doi.org/10.1016/j.scienta.2019.108759
  21. 21. Meier U. Growth stages of mono- and dicotyledonous plants: BBCH monograph. 2018. https://doi.org/10.5073/20180906-074619
  22. 22. Campoy JA, Ruiz D, Egea J. Dormancy in temperate fruit trees in a global warming context: A review. Sci Hortic. 2011;130:357–72. https://doi.org/10.1016/j.scienta.2011.07.011
  23. 23. Ramos A, Rapoport HF, Cabello D, Rallo L. Chilling accumulation, dormancy release temperature and the role of leaves in olive reproductive budburst. Sci Hortic. 2018;231:241–52. https://doi.org/10.1016/j.scienta.2017.11.003
  24. 24. Hutchins L. Influence of winter temperature on olive flowering. Paper presented at: Am Soc Hortic Sci Annual Meeting; 1932.
  25. 25. Weinberger JH. Chilling requirements of peach varieties. Proc Am Soc Hortic Sci. 1950;56.
  26. 26. Richardson E, Seeley S, Walker D. A model for estimating the completion of rest for ‘Redhaven’ and ‘Elberta’ peach trees. HortScience. 1974;9. https://doi.org/10.21273/HORTSCI.9.4.331
  27. 27. Fishman S, Erez A, Couvillon GA. Temperature dependence of dormancy breaking in plants. J Theor Biol. 1987;124:473–83. https://doi.org/10.1016/S0022-5193(87)80221-7
  28. 28. Erez A, Fishman S, Linsley-Noakes G, Allan P. The dynamic model for rest completion in peach buds. Acta Hortic. 1990;174.
  29. 29. Faust M, Liu D, Millard M, Stutte G. Bound versus free water in dormant apple buds. HortScience. 1991;26. https://doi.org/10.21273/HORTSCI.26.7.887
  30. 30. Faust M, Liu D, Line MJ, Stutte GW. Conversion of bound to free water in endodormant buds of apple. Acta Hortic. 1995;395:113–8. https://doi.org/10.17660/ActaHortic.1995.395.10
  31. 31. Luedeling E, Gassner A. Partial least squares regression for analyzing walnut phenology in California. Agric For Meteorol. 2012;158–159:43–52. https://doi.org/10.1016/j.agrformet.2011.10.020
  32. 32. Moriondo M, Ferrise R, Trombi G, Brilli L, Dibari C, Bindi M. Modelling olive trees and grapevines in a changing climate. Environ Model Softw. 2015;72:387–401. https://doi.org/10.1016/j.envsoft.2014.12.016
  33. 33. El Yaacoubi A, Oukabli A, Legave JM, Ainane T, Mouhajir A, Zouhair R, et al. Response of almond flowering and dormancy to Mediterranean temperature conditions. Sci Hortic. 2019;257:108687. https://doi.org/10.1016/j.scienta.2019.108687
  34. 34. El Yaacoubi A, Oukabli A, Hafidi M, Farrera I, Ainane T, Cherkaoui SI, et al. Validated model for apple flowering prediction in the Mediterranean area. Sci Hortic. 2019;249:59–64. https://doi.org/10.1016/j.scienta.2019.01.036
  35. 35. El Yaacoubi A, El Jaouhari N, Bourioug M, El Youssfi L, Cherroud S, Bouabid R, et al. Vulnerability of Moroccan apple orchards to climate-change-induced phenological perturbations. Int J Biometeorol. 2019;64:377–87. https://doi.org/10.1007/s00484-019-01821-y
  36. 36. Rojo J, Orlandi F, Ben Dhiab A, Lara B, Picornell A, Oteros J, et al. Estimation of chilling and heat accumulation periods based on olive pollination timing. Forests. 2020;11:835. https://doi.org/10.3390/f11080835
  37. 37. Delgado A, Egea JA, Luedeling E, Dapena E. Agroclimatic requirements of local apple cultivars in NW Spain. Sci Hortic. 2021;283:110093. https://doi.org/10.1016/j.scienta.2021.110093
  38. 38. Viti R, Andreini L, Ruiz D, Egea J, Bartolini S, Iacona C, et al. Dormancy overcoming in apricot flower buds under Mediterranean climates. Sci Hortic. 2010;124:217–24. https://doi.org/10.1016/j.scienta.2010.01.001
  39. 39. El Yaacoubi A, Malagi G, Oukabli A, Citadin I, Hafidi M, Bonhomme M, et al. Bud dormancy dynamics in temperate fruit trees. Int J Biometeorol. 2016;60:1695–710. https://doi.org/10.1007/s00484-016-1160-9
  40. 40. Faust M, Erez A, Rowland LJ, Wang SY, Norman HA. Bud dormancy in perennial fruit trees. HortScience. 1997;32:623–9. https://doi.org/10.21273/HORTSCI.32.4.623
  41. 41. Fernandez E, Whitney C, Luedeling E. Importance of chill model selection. Eur J Agron. 2020;119:126103. https://doi.org/10.1016/j.eja.2020.126103
  42. 42. Luedeling E, Brown PH. Global analysis of winter chill models. Int J Biometeorol. 2011;55:411–21. https://doi.org/10.1007/s00484-010-0352-y
  43. 43. Aybar VE, De Melo-Abreu JP, Searles PS, Matias AC, Del Rio C, Caballero JM, et al. Olive flowering at low latitude sites in Argentina. Span J Agric Res. 2015;13:e0901. https://doi.org/10.5424/sjar/2015131-6375
  44. 44. Picornell A, Abreu I, Ribeiro H. Trends and projections of Olea flowering in western Mediterranean. Agric For Meteorol. 2023;339:109559. https://doi.org/10.1016/j.agrformet.2023.109559
  45. 45. Luedeling E, Schiffers K, Fohrmann T, Urbach C. PhenoFlex: An integrated model for spring phenology prediction. Agric For Meteorol. 2021;307:108491. https://doi.org/10.1016/j.agrformet.2021.108491

Downloads

Download data is not yet available.