Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Ethnobotanical survey and in vitro quality assessment of Dendrobium thyrsiflorum B. S. Williams from the Ultapani Forest Range, Assam, India

DOI
https://doi.org/10.14719/pst.11303
Submitted
17 August 2025
Published
05-02-2026

Abstract

Dendrobium thyrsiflorum B. S. Williams (Orchidaceae), locally known as ‘Garudi Baha/ Khejari Baha’ by the Santhal community of the Ultapani Forest Range, Bodoland Territorial Region (BTR), Assam. The species occurs anthesis between March and May, with flowers reaching full bloom and attracting pollinators. This study investigated the ethnobotanical uses, macroscopic and microscopic pharmacognostic characteristics, qualitative and quantitative phytochemical composition, heavy metal content, antioxidant activity and volatile compound profile of D. thyrsiflorum. Ethnobotanical surveys conducted among the Santhal community revealed the traditional use of leaves and pseudobulbs as a medicine for the treatment of various gynecological and parasitic ailments. The examination of powdered plant material showed satisfactory organoleptic properties (colour, aroma/odour, flavour/taste and texture) for both leaves and pseudobulbs. Microscopic analysis identified fibers in both leaves and pseudobulbs, parenchyma cells and stomata in leaves and acicular crystals and spiral vessels in pseudobulbs. Aqueous extracts of leaves and pseudobulbs underwent qualitative phytochemical screening, revealing the presence of alkaloids, carbohydrates, glycosides, terpenoids and steroids in both tissues. The heavy metal analysis indicated the absence of bismuth, cadmium and lead in the samples. Quantitative phytochemical analysis determined the total polyphenol content (TPC) to be 27.62 ± 0.03 mg gallic acid equivalents (GAE)/g dry weight in leaves and 17.57 ± 0.02 mg GAE/g dry weight in pseudobulbs. The total flavonoid content (TFC) was measured as 120.36 ± 0.05 mg quercetin equivalents (QE)/g dry weight in leaves and 87.50 ± 0.04 mg QE/g dry weight in pseudobulbs. The antioxidant activity was further evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric ion reducing antioxidant potential (FRAP) assays, demonstrating higher activity for DPPH assay compared to the standard. Gas chromatography-mass spectrometry (GC-MS) analysis identified 88 compounds in leaves and 59 compounds in pseudobulbs. These findings contribute to the establishment of pharmacognostic and phytochemical standards for D. thyrsiflorum, aiding in species identification, quality control and standardization of herbal formulations.

References

  1. 1. Gossell-Williams M, Simon RE, West ME. The past and present use of plants for medicines. West Indian Med J. 2006;55(4):217–18.
  2. 2. Selvi S, Polat R, Çakilcioğlu U, Celep F, Dirmenci T, Ertuğ ZF. An ethnobotanical review on medicinal plants of the Lamiaceae family in Turkey. Turk J Bot. 2022;46(4):283–332. https://doi.org/10.55730/1300-008X.2712
  3. 3. Dressler RL. Phylogeny and classification of the orchid family. Cambridge: Cambridge University Press; 1993.
  4. 4. Biswas S, Singh D. A manual on orchid education. Pakyong: ICAR–National Research Centre for Orchids; 2019.
  5. 5. Singh S, Singh AK, Kumar S, Kumar M, Pandey PK, Singh MC. Medicinal properties and uses of orchids: a concise review. Elixir Appl Bot. 2012;52:11627–34.
  6. 6. Singh SK, Agrawala DK, Jalal JS, Dash SS, Mao AA, Singh P. Orchids of India: a pictorial guide. Kolkata: Botanical Survey of India; 2019.
  7. 7. Sharma A, Pathak P. The budding potential of orchids in the cosmeceutical sector: role of orchids in skincare and health. J Orchid Soc India. 2020;34:79–85.
  8. 8. Das S, Baruah S, Goyal AK. In vitro studies on quality assessment and ethnobotany of Acampe rigida (Buch.-Ham. ex Sm.) PF Hunt encountered in Ultapani Forest Range, Assam. Plant Sci Today. 2022;9(sp2):24–29. https://doi.org/10.14719/pst.1720
  9. 9. Xiaohua J, Singchi C, Yibo L. Taxonomic revision of Dendrobium monifolium complex (Orchidaceae). Sci Hortic. 2009;120(1):143–45. https://doi.org/10.1016/j.scienta.2008.10.002
  10. 10. Moudi M, Go R, Yien CYS, Saleh MN. A review on molecular systematic of the genus Dendrobium Sw. Acta Biol Malaysiana. 2013;2(2):71–78. http://doi.org/10.7593/abm/2.2.71
  11. 11. Gogoi K, Das R, Yonzone R. Orchids of Assam, North East India: an annotated checklist. Int J Pharm Life Sci. 2015;6(1):1–10.
  12. 12. Basumatary N, Sarma CM. Epiphytic orchid flora of Chirang Reserve Forest. J Phytol Res. 2004;17(1):33–37.
  13. 13. Basumatary S, Baruah S, Singh LJ. Two new additions to the orchid flora of Assam, India. J Threat Taxa. 2021;13(11):19665–70.
  14. 14. Das S, Baruah S, Goyal AK. Reduction in orchid diversity in Ultapani Forest range of Kokrajhar District of Assam. J Emerg Technol Innov Res. 2021;8(5):g677–g684.
  15. 15. Jain SK, Rao RR, editors. Field and herbarium methods. New Delhi: Today and Tomorrow Publishers; 1977.
  16. 16. Aslam I, Iqbal J, Peerzada S, Afridi MS, Ishtiaq S. Microscopic investigations and pharmacognostic techniques for the standardization of Caralluma edulis (Edgew.) Benth. ex Hook. f. Microsc Res Tech. 2019;82(11):1891–902. https://doi.org/10.1002/jemt.23357
  17. 17. Evans WC. Trease and Evans’ pharmacognosy. 16th ed. Saunders Elsevier; 2009.
  18. 18. Khandelwal KR. Practical pharmacognosy: techniques and experiments. 25th ed. Nirali Prakashan; 2017.
  19. 19. Trease GE, Evans WC. Pharmacognosy. 11th ed. London: Macmillian Publishers; 1989. p. 10–15.
  20. 20. Harborne AJ. Phytochemical methods: a guide to modern techniques of plant analysis. Dordrecht: Springer Science & Business Media; 1998. p. 49–188.
  21. 21. Kolawole OM. Studies on the efficacy of Bridelia ferruginea Benth. bark extract in reducing the coliform load and BOD of domestic wastewater. Ethnobot Leafl. 2006;10:228–38.
  22. 22. Edeoga HO, Okwu DE, Mbaebie BO. Phytochemical constituents of some Nigerian medicinal plants. Afr J Biotechnol. 2005;4(7):685–88. https://doi.org/10.5897/AJB2005.000-3127
  23. 23. Goyal AK, Middha SK, Sen A. Evaluation of the DPPH radical scavenging activity, total phenols and antioxidant activities in Indian wild Bambusa vulgaris “Vittata” methanolic leaf extract. J Nat Pharm. 2010;1(1):40–45. https://doi.org/10.4103/2229-5119.73586
  24. 24. Ranjith D. Fluorescence analysis and extractive values of herbal formulations used for wound healing activity in animals. J Med Plants Stud. 2018;6(2):189–92.
  25. 25. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic. 1965;16(3):144–58.
  26. 26. Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999;64(4):555–59.
  27. 27. Oyaizu M. Studies on products of browning reaction: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr Diet. 1986;44(6):307–15.
  28. 28. Usha T, Middha SK, Shanmugarajan D, Babu D, Goyal AK, Yusufoglu HS, et al. Gas chromatography–mass spectrometry metabolic profiling, molecular simulation and dynamics of diverse phytochemicals of Punica granatum L. leaves against estrogen receptor. Front Biosci (Landmark Ed). 2021;26(9):423–41. https://doi.org/10.52586/4957
  29. 29. Pruyn ML. Parenchyma. eLS. 2001;1–8. https://doi.org/10.1002/9780470015902.a0002083.pub2
  30. 30. Carlquist S. Living cells in wood 3. Overview; functional anatomy of the parenchyma network. Bot Rev. 2018;84:242–94. https://doi.org/10.1007/s12229-018-9198-5
  31. 31. Mukhi S, Bose A, Panda P, Rao MM. Pharmacognostic, physicochemical and chromatographic characterization of Samasharkara Churna. J Ayurveda Integr Med. 2016;7(2):88–99. https://doi.org/10.1016/j.jaim.2015.11.004
  32. 32. Schneider A. The probable function of calcium oxalate crystals in plants. Bot Gaz. 1901;32(2):142–44.
  33. 33. Bhagat PA, Bhuktar AS. Diversity of mineral crystals in various medicinal plants. Bioinfolet Q J Life Sci. 2017;14(4b):448–53.
  34. 34. Leon P. The homoiomeries of Anaxagoras. Class Q. 1927;21(3–4):133–41.
  35. 35. Karabelas AJ, Kostoglou M, Koutsou CP. Modeling of spiral wound membrane desalination modules and plants–review and research priorities. Desalination. 2015;356:165–86. https://doi.org/10.1016/j.desal.2014.10.002
  36. 36. Hussain G, Rasul A, Anwar H, Aziz N, Razzaq A, Wei W, et al. Role of plant derived alkaloids and their mechanism in neurodegenerative disorders. Int J Biol Sci. 2018;14(3):341–57. https://doi.org/10.7150/ijbs.23247
  37. 37. Lee S, Kim DC, Baek HY, Lee KD, Kim YC, Oh H. Antineuroinflammatory effects of tryptanthrin from Polygonum tinctorium Lour. in lipopolysaccharide-stimulated BV2 microglial cells. Arch Pharm Res. 2018;41(4):419–30. https://doi.org/10.1007/s12272-018-1020-8
  38. 38. Kurek J, editor. Introductory chapter: alkaloids–their importance in nature and for human life. In: Alkaloids–Their Importance in Nature and Human Life. London: IntechOpen; 2019. https://doi.org/10.5772/intechopen.85400
  39. 39. Adamski Z, Blythe LL, Milella L, Bufo SA. Biological activities of alkaloids: from toxicology to pharmacology. Toxins. 2020;12(4):210. https://doi.org/10.3390/toxins12040210
  40. 40. Mann J. Dietary carbohydrate: relationship to cardiovascular disease and disorders of carbohydrate metabolism. Eur J Clin Nutr. 2007;61(1):S100–S111. https://doi.org/10.1038/sj.ejcn.1602940
  41. 41. Maureen Z, Beth S, editors. The functions of carbohydrates in the body. In: An introduction to nutrition. 2012. p. 165–232.
  42. 42. Kanter M. High-quality carbohydrates and physical performance: expert panel report. Nutr Today. 2018;53(1):35–39. https://doi.org/10.1097/NT.0000000000000238
  43. 43. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Sci World J. 2013;2013:162750. https://doi.org/10.1155/2013/162750
  44. 44. Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47. https://doi.org/10.1017/jns.2016.41
  45. 45. Ruiz-Cruz S, Chaparro-Hernández S, Hernández-Ruiz KL, Cira-Chávez LA, Estrada-Alvarado MI, Gassos Ortega LE, et al. Flavonoids: important biocompounds in food. In: Flavonoids-from biosynthesis to human health. InTech; 2017. p. 353–69. https://doi.org/10.5772/67864
  46. 46. Soto-Blanco B. Herbal glycosides in healthcare. In: Herbal biomolecules in healthcare applications. Academic Press; 2022. p. 239–82. https://doi.org/10.1016/B978-0-323-85852-6.00021-4
  47. 47. Rahman MM, Rahaman MS, Islam MR, Rahman F, Mithi FM, Alqahtani T, et al. Role of phenolic compounds in human disease: current knowledge and future prospects. Molecules. 2021;27(1):233. https://doi.org/10.3390/molecules27010233
  48. 48. Shi J, Arunasalam K, Yeung D, Kakuda Y, Mittal G, Jiang Y. Saponins from edible legumes: chemistry, processing and health benefits. J Med Food. 2004;7(1):67–78. https://doi.org/10.1089/109662004322984734
  49. 49. Pizzi A. Tannins medical/pharmacological and related applications: a critical review. Sustain Chem Pharm. 2021;22:100481. https://doi.org/10.1016/j.scp.2021.100481
  50. 50. Yang W, Chen X, Li Y, Guo S, Wang Z, Yu X. Advances in pharmacological activities of terpenoids. Nat Prod Commun. 2020;15(3):1–13. https://doi.org/10.1177/1934578X20903555
  51. 51. Adhya D, Annuario E, Lancaster MA, Price J, Baron-Cohen S, Srivastava DP. Understanding the role of steroids in typical and atypical brain development: advantages of using a “brain in a dish” approach. J Neuroendocrinol. 2018;30(2):e12547. https://doi.org/10.1111/jne.12547
  52. 52. Awoyinka OA, Balogun IO, Ogunnowo AA. Phytochemical screening and in vitro bioactivity of Cnidoscolus aconitifolius (Euphorbiaceae). J Med Plants Res. 2007;1(3):63–65.
  53. 53. Paudel MR, Chand MB, Pant B, Pant B. Assessment of antioxidant and cytotoxic activities of extracts of Dendrobium crepidatum. Biomolecules. 2019;9(9):478. https://doi.org/10.3390/biom9090478
  54. 54. Chakraborty S, Mitra A, Dey P. Phytochemical profiling and antioxidant properties of in vitro-raised Dendrobium nobile Lindl. Ind Crops Prod. 2020;145:112099. https://doi.org/10.1016/j.indcrop.2019.112099
  55. 55. Longchar TB, Deb CR. Comparative analysis of nutraceutical potential phytochemicals and antioxidant activities in different parts of wild and in vitro regenerated plantlets of Dendrobium heterocarpum Wall. ex Lindl.: a medicinal orchid. J Pharmacogn Phytochem. 2021;10(4):331–36. https://doi.org/10.22271/phyto.2021.v10.i4d.14169
  56. 56. Rungsang T, Srivilai J, Rakasawapokin P, Mungmai L, Saesue K, Aoonboontum P, et al. Assessment of antioxidant, anti-lipid peroxidation, antiglycation, anti-inflammatory and anti-tyrosinase properties of Dendrobium sulcatum Lindl. Cosmetics. 2023;10(2):43. https://doi.org/10.3390/cosmetics10020043
  57. 57. Sa’ad H, Peppelenbosch MP, Roelofsen H, Vonk RJ, Venema K. Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. BBA Mol Cell Biol Lipids. 2010;1801(11):1175–83. https://doi.org/10.1016/j.bbalip.2010.07.007
  58. 58. Kinnunen T, Hannuksela M. Skin reactions to hexylene glycol. Contact Dermatitis. 1989;21(3):154–58. https://doi.org/10.1111/j.1600-0536.1989.tb04728.x
  59. 59. Kinnunen T, Koskela M. Antibacterial and antifungal properties of propylene glycol, hexylene glycol and 1,3-butylene glycol in vitro. Acta Derm Venereol. 1991;71(2):148–50.
  60. 60. Ismail GA, Gheda SF, Abo-Shady AM, Abdel-Karim OH. In vitro potential activity of some seaweeds as antioxidants and inhibitors of diabetic enzymes. Food Sci Technol. 2019;40:681–91. https://doi.org/10.1590/fst.15619
  61. 61. Lingfa L, Tirumala A, Ankanagari S. GC-MS profiling of anticancer and antimicrobial phytochemicals in the vegetative leaf, root and stem of Withania somnifera (L.) Dunal. Int J Second Metabolite. 2024;11(1):63–77. https://doi.org/10.21448/ijsm.1256932
  62. 62. Keskin D, Ceyhan N, Uğur A, Dbeys AD. Antimicrobial activity and chemical constitutions of West Anatolian olive (Olea europaea L.) leaves. J Food Agric Environ. 2012;10(2):99–102.
  63. 63. Musini A, Rao MJP, Giri A. Phytochemical investigations and antibacterial activity of Salacia oblonga Wall ethanolic extract. Ann Phytomedicine. 2013;2(1):102–07.
  64. 64. Alok Prakash AP, Suneetha V. Punica granatum (pomegranate) rind extract as a potent substitute for L-ascorbic acid with respect to the antioxidant activity. Res J Pharm Biol Chem Sci. 2014;5(2):597–603.
  65. 65. Ye X, Li H, Anjum K, Zhong X, Miao S, Zheng G, et al. Dual role of indoles derived from intestinal microbiota on human health. Front Immunol. 2022;13:903526. https://doi.org/10.3389/fimmu.2022.903526
  66. 66. Kim DH, Han SI, Go B, Oh UH, Kim CS, Jung YH, et al. 2-methoxy-4-vinylphenol attenuates migration of human pancreatic cancer cells via blockade of FAK and AKT signaling. Anticancer Res. 2019;39(12):6685–91. https://doi.org/10.21873/anticanres.13883
  67. 67. Shoeb A, Chowta M, Pallempati G, Rai A, Singh A. Evaluation of antidepressant activity of vanillin in mice. Indian J Pharmacol. 2013;45(2):141–44. https://doi.org/10.4103/0253-7613.108292
  68. 68. Dhanalakshmi C, Manivasagam T, Nataraj J, Justin Thenmozhi A, Essa MM. Neurosupportive role of vanillin, a natural phenolic compound, on rotenone induced neurotoxicity in SH-SY5Y neuroblastoma cells. Evid Based Complement Alternat Med. 2015;2015:626028. https://doi.org/10.1155/2015/626028
  69. 69. Anand A, Khurana R, Wahal N, Mahajan S, Mehta M, Satija S, et al. Vanillin: a comprehensive review of pharmacological activities. Plant Arch. 2019;19(2):1000–04.
  70. 70. Fernandez-Bolanos JG, Lopez O, Fernandez-Bolanos J, Rodriguez-Gutierrez G. Hydroxytyrosol and derivatives: isolation, synthesis and biological properties. Curr Org Chem. 2008;12(6):442–63. https://doi.org/10.2174/138527208784083888
  71. 71. Vahdati SN, Lashkari A, Navasatli SA, Ardestani SK, Safavi M. Butylated hydroxyl-toluene, 2,4-di-tert-butylphenol and phytol of Chlorella sp. protect the PC12 cell line against H₂O₂-induced neurotoxicity. Biomed Pharmacother. 2022;145:112415. https://doi.org/10.1016/j.biopha.2021.112415
  72. 72. Varsha KK, Devendra L, Shilpa G, Priya S, Pandey A, Nampoothiri KM. 2,4-di-tert-butyl phenol as the antifungal, antioxidant bioactive purified from a newly isolated Lactococcus sp. Int J Food Microbiol. 2015;211:44–50. https://doi.org/10.1016/j.ijfoodmicro.2015.06.025
  73. 73. Kuwahara H, Kanazawa A, Wakamatu D, Morimura S, Kida K, Akaike T, et al. Antioxidative and antimutagenic activities of 4-vinyl-2,6-dimethoxyphenol (canolol) isolated from canola oil. J Agric Food Chem. 2004;52(14):4380–87. https://doi.org/10.1021/jf040045+
  74. 74. Ganesan T, Subban M, Christopher Leslee DB, Kuppannan SB, Seedevi P. Structural characterization of n-hexadecanoic acid from the leaves of Ipomoea eriocarpa and its antioxidant and antibacterial activities. Biomass Convers Biorefin. 2024;1–12. https://doi.org/10.1007/s13399-022-03576-w
  75. 75. Hui Y, Wang X, Yu Z, Fan X, Cui B, Zhao T, et al. Scoparone as a therapeutic drug in liver diseases: pharmacology, pharmacokinetics and molecular mechanisms of action. Pharmacol Res. 2020;160:105170. https://doi.org/10.1016/j.phrs.2020.105170
  76. 76. Hao J, Shen X, Lu K, Xu Y, Chen Y, Liu J, et al. Scoparone attenuates cholestatic liver injury through regulating hepatic bile acid metabolism, ameliorating periductal fibrosis and inhibiting inflammatory response. Pharmacol Res Mod Chin Med. 2023;8:100292. https://doi.org/10.1016/j.prmcm.2023.100292
  77. 77. Choi BR, Kim HK, Park JK. Penile erection induced by scoparone from Artemisia capillaris through the nitric oxide–cyclic guanosine monophosphate signaling pathway. World J Mens Health. 2017;35(3):196–204. https://doi.org/10.5534/wjmh.17023
  78. 78. Al-Marzoqi AH, Hameed IH, Idan SA. Analysis of bioactive chemical components of two medicinal plants (Coriandrum sativum and Melia azedarach) leaves using gas chromatography-mass spectrometry. Afr J Biotechnol. 2015;14(40):2812–30. https://doi.org/10.5897/AJB2015.14956
  79. 79. Lerman A, Zeiher AM. Endothelial function: cardiac events. Circulation. 2005;111(3):363–68. https://doi.org/10.1161/01.CIR.0000153339.27064.14
  80. 80. Sakakibara S, Murakami R, Takahashi M, Fushimi T, Murohara T, Kishi M, et al. Vinegar intake enhances flow-mediated vasodilatation via upregulation of endothelial nitric oxide synthase activity. Biosci Biotechnol Biochem. 2010;74(5):1055–61. https://doi.org/10.1271/bbb.90953
  81. 81. Samad A, Azlan A, Ismail A. Therapeutic effects of vinegar: a review. Curr Opin Food Sci. 2016;8:56–61. https://doi.org/10.1016/j.cofs.2016.03.001
  82. 82. Brighenti F, Castellani G, Benini L, Casiraghi MC, Leopardi E, Crovetti R, et al. Effect of neutralized and native vinegar on blood glucose and acetate responses to a mixed meal in healthy subjects. Eur J Clin Nutr. 1995;49(4):242–47.
  83. 83. Johnston CS, Steplewska I, Long CA, Harris LN, Ryals RH. Examination of the antiglycemic properties of vinegar in healthy adults. Ann Nutr Metab. 2010;56(1):74–79. https://doi.org/10.1159/000272133
  84. 84. Liatis S, Grammatikou S, Poulia KA, Perrea D, Makrilakis K, Diakoumopoulou E, et al. Vinegar reduces postprandial hyperglycaemia in patients with type II diabetes when added to a high, but not to a low, glycaemic index meal. Eur J Clin Nutr. 2010;64(7):727–32. https://doi.org/10.1038/ejcn.2010.89
  85. 85. Khabibrakhmanova AM, Faizova RG, Lodochnikova OA, Zamalieva RR, Latypova LZ, Trizna EY, et al. The novel chiral 2(5H)-furanone sulfones possessing terpene moiety: synthesis and biological activity. Molecules. 2023;28(6):2543. https://doi.org/10.3390/molecules28062543
  86. 86. Trizna EY, Khakimullina EN, Latypova LZ, Kurbangalieva AR, Sharafutdinov IS, Evtyugin VG, et al. Thio derivatives of 2(5H)-furanone as inhibitors against Bacillus subtilis biofilms. Acta Naturae. 2015;7(2):102–07.
  87. 87. Sung WS, Jung HJ, Park K, Kim HS, Lee IS, Lee DG. 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF); antimicrobial compound with cell cycle arrest in nosocomial pathogens. Life Sci. 2007;80(6):586–91. https://doi.org/10.1016/j.lfs.2006.10.008
  88. 88. Aqeel MT, Rahman NU, Khan AU, Khan MT, Ashraf Z, ul Hassan SS, et al. Cardioprotective effect of 2-methoxy phenol derivatives against oxidative stress-induced vascular complications: an integrated in vitro, in silico and in vivo investigation. Biomed Pharmacother. 2023;165:115240. https://doi.org/10.1016/j.biopha.2023.115240
  89. 89. Bharath B, Perinbam K, Devanesan S, AlSalhi MS, Saravanan M. Evaluation of the anticancer potential of hexadecanoic acid from brown algae Turbinaria ornata on HT–29 colon cancer cells. J Mol Struct. 2021;1235:130229. https://doi.org/10.1016/j.molstruc.2021.130229

Downloads

Download data is not yet available.