Skip to main navigation menu Skip to main content Skip to site footer

Special call (Plant Systematics, Ethnobotany & Studies on Lower Plant Groups)

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

Study of variation in floral metabolite profiles of Tabernaemontana divaricata (L.) R. Br. genotypes based on gas chromatography- mass spectrometry

DOI
https://doi.org/10.14719/pst.11308
Submitted
16 August 2025
Published
28-10-2025

Abstract

Tabernaemontana divaricata (L.) R. Br. is a popular ornamental shrub. Each and every part of the plant is medicinally very significant. The floral metabolome of it remains largely uncharacterized. In this study, gas chromatography-mass spectrometry (GC-MS) analysis was performed on methanolic floral extracts from four genotypes leading to the identification of 68-99 metabolites out of which 30 metabolites based on notable peak area percentages from all 4 genotypes were taken to further study. The detected compounds included methyl salicylate, myo-inositol, cis-vaccenic acid, squalene, geraniol, phytol, n-hexadecanoic acid and benzene derivatives. The metabolites belong to diverse chemical classes such as esters, terpenoids, lactones, fatty acid derivatives and aromatic alcohols. These metabolites are well known for their antioxidant, antimicrobial and anti-inflammatory properties. Chemometric tools including principal component analysis (PCA), hierarchical clustering and Venn diagrams revealed clear genotype-specific variation and distinct grouping based on metabolite profiles. Whereas previous reports have focused on alkaloid-rich leaf and latex extracts, this study provides first characterization of the floral metabolite diversity and identifies genotype specific metabolic profiles of T. divaricata, thereby enhancing its chemotaxonomic understanding. Potential applications in breeding, fragrance or therapeutics are suggested as future avenues for research.

References

  1. 1. Dudareva N, Klempien A, Muhlemann JK, Kaplan I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist. 2013;198(1):16-32. https://doi.org/10.1111/nph.12145
  2. 2. Stashenko EE, Martínez JR. Sampling flower scent for chromatographic analysis. Journal of Separation Science. 2008;31(11):2022-31. https://doi.org/10.1002/jssc.200800151
  3. 3. Pichersky E, Dudareva N. Scent engineering: toward the goal of controlling how flowers smell. Trends in Biotechnology. 2007;25(3):105-10. https://doi.org/10.1016/j.tibtech.2007.01.002
  4. 4. Zhang XW, Li QH, Xu ZD, Dou JJ. Mass spectrometry-based metabolomics in health and medical science: a systematic review. RSC Advances. 2020;10(6):3092-104. https://doi.org/10.1039/C9RA08985C
  5. 5. Štiblariková M, Lásiková A, Gracza T. Benzyl alcohol/salicylaldehyde-type polyketide metabolites of fungi: sources, biosynthesis, biological activities and synthesis. Marine Drugs. 2022;21(1):19. https://doi.org/10.3390/md21010019
  6. 6. Silveira DA, de Melo AF, Magalhães PO, Fonseca-Bazzo YM. Tabernaemontana species: promising sources of new useful drugs. Studies in Natural Products Chemistry. 2017;54:227-89. https://doi.org/10.1016/B978-0-444-63929-5.00007-3
  7. 7. Samanta D, Lahiri K, Mukhopadhyay MJ, Mukhopadhyay S. Karyomorphological analysis of different varieties of Tabernaemontana coronaria. Cytologia. 2015;80(1):67-73. https://doi.org/10.1146/annurev.ecolsys.38.091206.095601
  8. 8. Naidoo CM, Naidoo Y, Dewir YH, Murthy HN, El-Hendawy S, Al-Suhaibani N. Major bioactive alkaloids and biological activities of Tabernaemontana species (Apocynaceae). Plants. 2021;10(2):313. https://doi.org/10.3390/plants10020313
  9. 9. Ghosh P, Poddar S, Chatterjee S. Morphological features, phytochemical and ethnopharmacological attributes of Tabernaemontana divaricata Linn.: a comprehensive review. Journal of Pharmacognosy and Phytochemistry. 2021;10(6):31-6. https://doi.org/10.22271/phyto.2021.v10.i6a.14253
  10. 10. Kalaimagal C. Identification of bioactive compounds in flower of Tabernaemontana divaricata (L.) using gas chromatography-mass spectrometry analysis. Asian Journal of Pharmaceutical and Clinical Research. 2019;12(9):129-32.
  11. 11. Bindu Rathaur MA, Kumar S, Nishad U. Phytochemical analysis of Tabernaemontana divaricata. Journal of Pharmacognosy and Phytochemistry. 2020;9(2):1283-91.
  12. 12. Pang Z, Lu Y, Zhou G, Hui F, Xu L, Viau C, et al. MetaboAnalyst 6.0: towards a unified platform for metabolomics data processing, analysis and interpretation. Nucleic Acids Research. 2024;52(W1):W398-406. https://doi.org/10.1093/nar/gkae253
  13. 13. Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C. jvenn: an interactive Venn diagram viewer. BMC Bioinformatics. 2014;15(1):293. https://doi.org/10.1186/1471-2105-15-293
  14. 14. Li XM, Jiang XJ, Wei GZ, Ren LH, Wang LX, Cheng XL, Wang F. New iboga-type indole alkaloids from Tabernaemontana divaricata. Natural Products and Bioprospecting. 2019;9(6):425-9. https://doi.org/10.1038/nprot.2006.59
  15. 15. Shukor MFA, Ismail I, Zainal Z, Noor NM. Development of a Polygonum minus cell suspension culture system and analysis of secondary metabolites enhanced by elicitation. Acta Physiologiae Plantarum. 2013;35:1675-89. https://doi.org/10.1508/cytologia.80.67
  16. 16. Nalawade TM, Bhat K, Sogi SH. Bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400 and polyethylene glycol 1000 against selected microorganisms. Journal of International Society of Preventive and Community Dentistry. 2015;5(2):114-9. https://doi.org/10.4103/2231-0762.1557
  17. 17. Yang XN, Khan I, Kang SC. Chemical composition, mechanism of antibacterial action and antioxidant activity of leaf essential oil of Forsythia koreana deciduous shrub. Asian Pacific Journal of Tropical Medicine. 2015;8(9):694-700. https://doi.org/10.1016/j.apjtm.2015.07.031
  18. 18. Corre J, Lucchini JJ, Mercier GM, Cremieux A. Antibacterial activity of phenethyl alcohol and resulting membrane alterations. Research in Microbiology. 1990;141(4):483-97. https://doi.org/10.1016/0923-2508(90)90074-Z
  19. 19. Gopalakrishnan K, Udayakumar R. GC-MS analysis of phytocompounds of leaf and stem of Marsilea quadrifolia (L.). International Journal of Biochemistry Research & Review. 2014;4:517-26. https://doi.org/10.9734/IJBCRR/2014/11350
  20. 20. Camponogara C, Casoti R, Brusco I, Piana M, Boligon AA, Cabrini DA, et al. Tabernaemontana catharinensis leaves exhibit topical anti-inflammatory activity without causing toxicity. Journal of Ethnopharmacology. 2019;231:205-16. https://doi.org/10.1016/j.jep.2018.11.021
  21. 21. Gerdemann C, Eicken C, Krebs B. The crystal structure of catechol oxidase: new insight into the function of type-3 copper proteins. Accounts of Chemical Research. 2002;35(3):183-91. https://doi.org/10.1021/ar990019a
  22. 22. Mao P, Liu Z, Xie M, Jiang R, Liu W, Wang X, et al. Naturally occurring methyl salicylate glycosides. Mini Reviews in Medicinal Chemistry. 2014;14(1):56-63. https://doi.org/10.2174/1389557513666131211110004
  23. 23. Verma P, Kumar S, Ojha S, Mishra S. Synthesis, characterization and biological activity of 4-methyl-benzene sulfonohydrazide derivatives. Letters in Drug Design & Discovery. 2024;21(3):529-41. https://doi.org/10.2174/1570180820666221024141247
  24. 24. Chen W, Viljoen AM. Geraniol-a review of a commercially important fragrance material. South African Journal of Botany. 2010;76(4):643-51. https://doi.org/10.1016/j.sajb.2010.05.008
  25. 25. Younis NS, Mohamed ME. β-Caryophyllene as a potential protective agent against myocardial injury: the role of toll-like receptors. Molecules. 2019;24(10):1929. https://doi.org/10.3390/molecules24101929
  26. 26. Boligon AA, Piana M, Kubiça TF, Mario DN, Dalmolin TV, Bonez PC, et al. HPLC analysis and antimicrobial, antimycobacterial and antiviral activities of Tabernaemontana catharinensis A. DC. Journal of Applied Biomedicine. 2015;13(1):7-18. https://doi.org/10.1016/j.jab.2014.01.004
  27. 27. Arokiyaraj S, Bharanidharan R, Agastian P, Shin H. Chemical composition, antioxidant activity and antibacterial mechanism of action from Marsilea minuta leaf hexane:methanol extract. Chemistry Central Journal. 2018;12(1):105. https://doi.org/10.1186/s13065-018-0476-4
  28. 28. Amtaghri S, Slaoui M, Eddouks M. Mentha pulegium: a plant with several medicinal properties. Endocrine, Metabolic & Immune Disorders-Drug Targets. 2024;24(3):302-20. https://doi.org/10.2174/1871530323666230914103731
  29. 29. Venuti I, Ceruso M, D’Angelo C, Casillo A, Pepe T. Antimicrobial activity evaluation of pure compounds obtained from Pseudoalteromonas haloplanktis against Listeria monocytogenes: preliminary results. Italian Journal of Food Safety. 2022;11(2):10320. https://doi.org/10.4081/ijfs.2022.10320
  30. 30. Juárez-Rodríguez MM, Cortes-López H, García-Contreras R, González-Pedrajo B, Díaz-Guerrero M, Martínez-Vázquez M, et al. Tetradecanoic acids with anti-virulence properties increase the pathogenicity of Pseudomonas aeruginosa in a murine cutaneous infection model. Frontiers in Cellular and Infection Microbiology. 2021;10:597517. https://doi.org/10.1007/s13659-019-00226-z
  31. 31. Islam MT, de Alencar MV, da Conceição Machado K, de Carvalho Melo-Cavalcante AA, de Sousa DP, de Freitas RM. Phytol in a pharma-medico-stance. Chemico-Biological Interactions. 2015;240:60-73. https://doi.org/10.1016/j.cbi.2015.07.010
  32. 32. Cheng L, Ji T, Zhang M, Fang B. Recent advances in squalene: biological activities, sources, extraction and delivery systems. Trends in Food Science & Technology. 2024;146:104392. https://doi.org/10.1016/0923-2508(90)90074-Z
  33. 33. Chan WK, Tan LT, Chan KG, Lee LH, Goh BH. Nerolidol: a sesquiterpene alcohol with multi-faceted pharmacological and biological activities. Molecules. 2016;21(5):529. https://doi.org/10.3390/molecules21050529
  34. 34. Gurnani N, Kapoor N, Mehta D, Gupta M, Mehta B. Characterization of chemical groups and identification of novel volatile constituents in organic solvent extracts of cured Indian vanilla beans by GC-MS. Middle-East Journal of Scientific Research. 2014;22(5):769-76. https://doi.org/10.5829/idosi.mejsr.2014.22.05.21935
  35. 35. Bakrim S, Benkhaira N, Bourais I, Benali T, Lee LH, El Omari N, et al. Health benefits and pharmacological properties of stigmasterol. Antioxidants. 2022;11(10):1912. https://doi.org/10.3390/antiox11101912
  36. 36. Zhou Y, Liu X, Yang Z. Characterization of terpene synthase from tea green leafhopper being involved in formation of geraniol in tea (Camellia sinensis) leaves and potential effect of geraniol on insect-derived endobacteria. Biomolecules. 2019;9(12):808. https://doi.org/10.3390/biom9120808
  37. 37. Frank L, Wenig M, Ghirardo A, van der Krol A, Vlot AC, Schnitzler JP, Rosenkranz M. Isoprene and β-caryophyllene confer plant resistance via different plant internal signalling pathways. Plant, Cell & Environment. 2021;44(4):1151-64. https://doi.org/10.1111/pce.14010
  38. 38. Dötterl S, Gershenzon J. Chemistry, biosynthesis and biology of floral volatiles: roles in pollination and other functions. Natural Product Reports. 2023;40(12):1901-37. https://doi.org/10.1039/D3NP00024A
  39. 39. Kalaimagal C, Umamaheswari G. Bioactive compounds from the leaves of Tabernaemontana divaricata (L.). International Journal of Recent Scientific Research. 2015;6(4):3520-2.
  40. 40. Anbukkarasi M, Thomas PA, Sundararajan M, Geraldine P. Gas chromatography-mass spectrometry analysis and in vitro antioxidant activity of the ethanolic extract of the leaves of Tabernaemontana divaricata. Pharmacognosy Journal. 2016;8:1-6.
  41. 41. Naidoo CM, Naidoo Y, Dewir YH, Murthy HN, El-Hendawy S, Al-Suhaibani N. Major bioactive alkaloids and biological activities of Tabernaemontana species (Apocynaceae). Plants. 2021;10(2):313.

Downloads

Download data is not yet available.