Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

Assessment of bio-nanoemulsion seed priming on sucking pest management and vigor enhancement in cotton

DOI
https://doi.org/10.14719/pst.11335
Submitted
18 August 2025
Published
13-11-2025

Abstract

Cotton (Gossypium spp. L.) is the most important natural fibre crop. Various sucking pests, including aphids, jassids, whiteflies and thrips, often constrain its productivity. Seed treatment is recognized as a vital strategy for managing these pests, thereby reducing the need for repeated foliar insecticide applications. The azadirachtin nano emulsion (NE) was prepared using azadirachtin (1 % w/v), 1 % chitosan (50 % v/v) and 5 % (v/v) neem oil as key components. In this study, we evaluated the effect of an azadirachtin-based polymer NE (NE 1 %) for its effects on seed germination and early-season pest suppression under both laboratory and field conditions. The optimised NE exhibited a mean droplet size of 159.4 nm and a low polydispersity index (PDI = 0.189), indicating good stability and uniformity. Laboratory assays revealed that application of NE at 10 mL kg-1 significantly enhanced germination (72 %) (p < 0.003) and vigor index (2434.47) (p < 0.002) outperforming thiamethoxam and water priming. In contrast, under field trials, thiamethoxam 25 % water dispersible granule (WG) (7 g kg-1) (a synthetic insecticide) was more effective in suppressing aphids, leafhoppers, whiteflies and thrips, maintaining near-zero aphid populations for 5 weeks. Application of NE at 5, 7 and 10 mL kg-1 showed a dose-dependent improvement and closely matched thiamethoxam in action at 10 mL kg-1 by reducing whitefly and thrips populations. This is the first report of using azadirachtin NE as a seed treatment in cotton. Although synthetic treatments ensured longer persistence, the azadirachtin nanoformulation offers a promising, eco-friendly, sustainable option for Integrated Pest Management (IPM).

References

  1. 1. North JH, Gore J, Catchot AL, Stewart SD, Lorenz GM, Musser FR, et al. Value of neonicotinoid insecticide seed treatments in mid-south cotton (Gossypium hirsutum) production systems. J Econ Entomol. 2018;111(1):10-15. https://doi.org/10.1093/jee/tox324
  2. 2. Singh A, Kaur A. Comparative studies on seed protein characteristics in eight lines of two Gossypium species. J Cotton Res. 2019;2(1):6. https://doi.org/10.1186/s42397-019-0024-3
  3. 3. Kannan M, Uthamasamy S, Mohan S. Impact of insecticides on sucking pests and natural enemy complex of transgenic cotton. Curr Sci. 2004;86(5):726-9. https://www.jstor.org/stable/24108912
  4. 4. Jans Y, von Bloh W, Schaphoff S, Müller C. Global cotton production under climate change- implications for yield and water consumption. Hydrol Earth Syst Sci. 2021;25(4):2027-44. https://doi.org/10.5194/hess-25-2027-2021
  5. 5. Zhang L, Greenberg SM, Zhang Y, Liu TX. Effectiveness of thiamethoxam and imidacloprid seed treatments against Bemisia tabaci on cotton. Pest Manag Sci. 2011;67(2):226-32. https://doi.org/10.1002/ps.2056
  6. 6. Alemu Z, Getahun S, Seid N. Efficacy of seed treatment insecticides against major early season sucking pests on cotton in the Middle Awash, Afar Region, Ethiopia. J Trop Crop Sci. 2025;12(1):124-31. https://doi.org/10.29244/jtcs.12.01.124-131
  7. 7. Gowda R, Rani K, Roopashree B. Application of nanotechnology in improving seed quality and crop productivity: prospects and developments-A review. Mysore J Agric Sci. 2022;56(4):10-20. https://uasbangalore.edu.in/images/2022-4th-Issue/2.pdf.
  8. 8. Khursheed A, Rather MA, Jain V, Wani AR, Rasool S, Nazir R, et al. Plant-based natural products as potential ecofriendly and safer biopesticides: A comprehensive overview of their advantages over conventional pesticides, limitations and regulatory aspects. Microb Pathog. 2022;173:105854. https://doi.org/10.1016/j.micpath.2022.105854
  9. 9. Mordue AJ, Blackwell A. Azadirachtin: An update. J Insect Physiol. 1993;39:903-24. https://doi.org/10.1016/0022-1910(93)90001-8
  10. 10. Boadu KO, Tulashie SK, Anang MA, Kpan JD. Production of natural insecticide from neem leaves (Azadirachta indica). Asian J Plant Sci Res. 2011;1(4):33-38. www.pelagiaresearchlibrary.com
  11. 11. Roy S, Gurusubramanian G. Bioefficacy of azadirachtin content of neem formulation against three major sucking pests of tea in sub-Himalayan tea plantation of North Bengal, India. Agric Trop Subtrop. 2011;44(3):134-43.
  12. 12. Rajashekar Y, Bakthavatsalam N, Shivanandappa T. Botanicals as grain protectants. Psyche (Camb Mass). 2012;2012:646740. https://doi.org/10.1155/2012/646740
  13. 13. Gahukar RT, Das RK. Plant-derived nanopesticides for agricultural pest control: challenges and prospects. Nanotechnol Environ Eng. 2020;5(1):3. https://doi.org/10.1007/s41204-020-0066-2
  14. 14. Kilani-Morakchi S, Morakchi-Goudjil H, Sifi K. Azadirachtin-based insecticide: overview, risk assessments and future directions. Front Agron. 2021;3:676208. https://doi.org/10.3389/fagro.2021.676208
  15. 15. Lavoir AV, Michel T, Poëssel JL, Siegwart M. Challenges in developing botanical biopesticides for pest control. In: Extended Biocontrol. Dordrecht: Springer Netherlands. 2022. p. 161-70. https://doi.org/10.1007/978-94-024-2150-7_14
  16. 16. Fahmi MZ. Chitosan-based neem seed extract nanocapsules: A new approach on enhancing its effectiveness as an insecticide delivery agent. J Chem Technol Metall. 2017;52(6):1129-34.
  17. 17. Abenaim L, Conti B. Chitosan as a control tool for insect pest management: A review. Insects. 2023;14(12):949. https://doi.org/10.3390/insects14120949
  18. 18. Mdarhri Y, Bouziane I, Korodowou I, Mokhtari N, Rissouli L, Touhami F, et al. Stabilization of argan oil nanoemulsions using chitosan extracted from pink shrimp shells. Appl Sci. 2025;15(5):2394. https://doi.org/10.3390/app15052394
  19. 19. Singh A, Rawat S, Rajput VD, Minkina T, Mandzhieva S, Eloyan A, et al. Nanotechnology products in agriculture and environmental protection: Advances and challenges. Egypt J Soil Sci. 2024;64(4):1355-78. https://doi.org/10.21608/ejss.2024.300047.1802
  20. 20. Vishnu M, Kannan M, Soundararajan RP, Suganthi A, Subramanian A, Senthilkumar M, et al. Nano-bioformulations: emerging trends and potential applications in next generation crop protection. Environ Sci Nano. 2024;11(7):2831-60. https://doi.org/10.1039/D4EN00263F
  21. 21. Samyuktha SS, Malaichamy K, Kamalakannan M, Vishnu M, Soundararajan RP, Anand T, et al. Eco-nanotechnology: phyto essential oil-based pest control for stored products. Environ Sci Nano. 2025;12:4150-80. https://doi.org/10.1039/D5EN00397K
  22. 22. Thakur N, Yadav AN. Nanotechnology in agriculture: A review on precision farming and sustainable crop production. BioNanoScience. 2025;15(2):243. https://doi.org/10.1007/s12668-025-01861-2
  23. 23. Bist DR, Chapagaee P, Kunwar A, Pant BD, Khatri L, Mandal A. Nanotechnology in agriculture: A review of innovations in crop protection and food security. Adv Agric. 2025;2025(1):8892001. https://doi.org/10.1155/aia/8892001
  24. 24. do Espirito Santo Pereira A, Caixeta Oliveira H, Fernandes Fraceto L, Santaella C. Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials. 2021;11(2):267. https://doi.org/10.3390/nano11020267
  25. 25. Zhao L, Zhou X, Kang Z, Peralta-Videa JR, Zhu YG. Nano-enabled seed treatment: A new and sustainable approach to engineering climate-resilient crops. Sci Total Environ. 2024;910:168640. https://doi.org/10.1016/j.scitotenv.2023.168640
  26. 26. Shelar A, Nile SH, Singh AV, Rothenstein D, Bill J, Xiao J, et al. Recent advances in nano-enabled seed treatment strategies for sustainable agriculture: challenges, risk assessment and future perspectives. Nano-Micro Lett. 2023;15(1):54. https://doi.org/10.1007/s40820-023-01025-5
  27. 27. Chaudhary S, Prasanna D, Trivedi PK, Nandy R, Prasad SS, Sunitha S, et al. Nanotechnology applications in agriculture for crop protection and nutrient delivery: A review. Int J Plant Soil Sci. 2025;37(9):106-19. https://doi.org/10.9734/ijpss/2025/v37i95690
  28. 28. Bartelsmeier I, Kilian M, ten Broeke CJ, Mertens D, Dicke M. Local and systemic effect of azadirachtin on host choice and feeding activity of Macrosiphum rosae on rose plants. Arthropod-Plant Interact. 2022;16(2):191-204. https://doi.org/10.1007/s11829-022-09889-x
  29. 29. Roychoudhury R. Neem products. In: Ecofriendly pest management for food security. Academic Press. 2016. p. 545-62. https://doi.org/10.1016/B978-0-12-803265-7.00018-X
  30. 30. Sugumar S, Nirmala J, Ghosh V, Anjali H, Mukherjee A, Chandrasekaran N. Bio-based nanoemulsion formulation, characterization and antibacterial activity against food-borne pathogens. J Basic Microbiol. 2013;53(8):677-85. https://doi.org/10.1002/jobm.201200060
  31. 31. Prajapati KV, Prajapati MR, Devi BM, Purohit J, Panickar B, Thilakar S, et al. Paper towel method: in vitro inoculation technique for rapid and robust assessment of clusterbean and cowpea genotypes against Macrophomina phaseolina. Microbiol Res. 2024;15(4):2522-34. https://doi.org/10.3390/microbiolres15040168
  32. 32. ISTA. International Rules for Seed Testing bassersdorf (Switzerland): International Seed Testing Association, Wallisellen, Switzerland. 2023.
  33. 33. Anbalagan A, Yadav S, Choudhary R, Sushma MK, Yadav A, Singh D, Yadav SK. Nanopriming with TiO₂ enhances germination by affecting chlorophyll content, osmolytes and antioxidant defense system in lentil (Lens culinaris Medik.). Russ J Plant Physiol. 2025;72(1):12. https://doi.org/10.1134/S1021443724608310
  34. 34. Heydari M, Amirjani A, Bagheri M, Sharifian I, Sabahi Q. Eco-friendly pesticide based on peppermint oil nanoemulsion: preparation, physicochemical properties and its aphicidal activity against cotton aphid. Environ Sci Pollut Res. 2020;27(6):6667-79. https://doi.org/10.1007/s11356-019-07332-y
  35. 35. Lee L, Norton IT. Comparing droplet breakup for a high-pressure valve homogeniser and a microfluidizer for the potential production of food-grade nanoemulsions. J Food Eng. 2013;114(2):158-63. https://doi.org/10.1016/j.jfoodeng.2012.08.009
  36. 36. Goh PS, Ng MH, Choo YM, Amru NB, Chuah CH. Production of nanoemulsions from palm-based tocotrienol rich fraction by microfluidization. Molecules. 2015;20(11):19936-46. https://doi.org/10.3390/molecules201119666
  37. 37. Gupta A, Eral HB, Hatton TA, Doyle PS. Nanoemulsions: formation, properties and applications. Soft Matter. 2016;12(11):2826-41. https://doi.org/10.1039/C5SM02958A
  38. 38. Hashem AS, Awadalla SS, Zayed GM, Maggi F, Benelli G. Pimpinella anisum essential oil nanoemulsions against Tribolium castaneum-insecticidal activity and mode of action. Environ Sci Pollut Res. 2018;25(19):18802-12. https://doi.org/10.1007/s11356-018-2068-1
  39. 39. Azmy RM, El Gohary EG, Mahmoud DM, Salem AM, Abdou MA, Salama SM. Assessment of larvicidal activity of nanoemulsion from Citrus sinensis essential oil on Culex pipiens. Egypt J Aquat Biol Fish. 2019;23(3):61-7. https://doi.org/10.21608/ejabf.2019.35100
  40. 40. Kumar A, Jaiswal M. Enhanced intestinal permeability of Tinospora cordifolia extract through nanoemulsion formulation: in-vitro and ex-vivo studies. J Nanopharm Drug Deliv. 2014;2(3):209-18. https://doi.org/10.1166/jnd.2014.1061
  41. 41. Shcherban AB. Chitosan and its derivatives as promising plant protection tools. Vavilov J Genet Breed. 2023;27(8):1010. https://doi.org/10.18699/VJGB-23-116
  42. 42. Riseh RS, Vazvani MG, Vatankhah M, Kennedy JF. Chitosan coating of seeds improves the germination and growth performance of plants: A review. Int J Biol Macromol. 2024;278:134750. https://doi.org/10.1016/j.ijbiomac.2024.134750
  43. 43. Adeleke DB, Anjorin TS, Aderolu IA, Yunusa I. Phytotoxic effects of neem oil nanoemulsion on maize (Zea mays L.) seed germination and seedling vigour. Int J Pathogen Res. 2025;14(5):51-61. https://doi.org/10.9734/ijpr/2025/v14i5390.
  44. 44. Rathinavel K. Effect of seed treatments on viability and vigor of cotton seeds (Gossypium hirsutum L.) under ambient storage. J Cotton Res Dev. 2017;31(1):1-6. https://www.researchgate.net/publication/316238553
  45. 45. Kumar J, Chaurasia AK, Bara BM. Effect of organic priming on germination and vigor of cotton (Gossypium hirsutum L.) seed. J Pharmacogn Phytochem. 2017;6(3):815-9.
  46. 46. Signaboubo S, Noumbo GT, Aoudou Y, Fovo JD, Kamdoum EK. Efficacy of three local plant extracts as seed treatment on the germination, infection and vigor index of two cotton seed varieties from Chad. Int J Appl Biol Pharm Technol. 2015;6(2):39-47. https://www.researchgate.net/publication/283502713
  47. 47. Zhang Z, Zhang X, Wang Y, Zhao Y, Lin J, Liu F, et al. Nitenpyram, dinotefuran and thiamethoxam used as seed treatments act as efficient controls against Aphis gossypii via high residues in cotton leaves. J Agric Food Chem. 2016;64(49):9276-85. https://doi.org/10.1021/acs.jafc.6b03430
  48. 48. Ester A, De Putter H, Van Bilsen JGPM. Filmcoating the seed of cabbage (Brassica oleracea L. convar. capitata L.) and cauliflower (Brassica oleracea L. var. botrytis L.) with imidacloprid and spinosad to control insect pests. Crop Prot. 2003;22(5):761-8. https://doi.org/10.1016/S0261-2194(03)00042-5
  49. 49. Troltzsch CM, Fuhr F, Wieneke J, Elbert A. Influence of various irrigation procedures on the uptake of imidacloprid by cotton after seed treatment. 1994;47:241-91. https://www.cabidigitallibrary.org/doi/full/10.5555/19951115321
  50. 50. Indira Gandhi P, Gunasekaran K, Sa T. Neem oil as a potential seed dresser for managing homopterous sucking pests of okra (Abelmoschus esculentus (L.) Moench). J Pest Sci. 2006;79(2):103-11. https://doi.org/10.1007/s10340-006-0122-0

Downloads

Download data is not yet available.