Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Geospatial assessment of cropping intensity: Advances, challenges and future directions

DOI
https://doi.org/10.14719/pst.11351
Submitted
19 August 2025
Published
08-10-2025

Abstract

Cropping intensity (CI) is an important parameter used for evaluating agricultural land use efficiency, with significant implications for global food security, sustainable land management and economic stability. As the world’s population continues to grow, effective monitoring of CI is vital for fulfilling the rising food demand and addressing challenges caused by climate change. This review article explains the current state of the field, discusses significant advances made possible by remote sensing and geospatial technologies. The paper explores the evolution of methodologies, from traditional time-series analysis to modern machine and deep learning algorithms and highlights regional applications across different continents. However, persistent and critical challenges were identified that limit the full potential of these tools. some of the Key issues and significant data gaps were included. A major research gap remains due to less integration of socio-economic and policy data into geospatial models, which limits our ability to understand the complex drivers behind the changes observed in CI. The future of this field requires a coordinated, interdisciplinary approach. Recommendations include promoting open-access platforms and harmonized standardized datasets, developing automated algorithms that leverage multi-source data fusion and using the ground truth data to fill the gaps. This comprehensive approach is needed to provide the reliable, predictive intelligence required for accurate policy decisions and sustainable agriculture worldwide.

References

  1. 1. FAO. The state of the world's land and water resources for food and agriculture (SOLAW) - Managing systems at risk. Rome: Food and Agriculture Organization of the United Nations; 2011.
  2. 2. Cassman KG, Grassini P, van Wart J. Crop yield potential, yield trends and global food security in a changing climate. In: Hillel D, Rosenzweig C, editors. Handbook of climate change and agroecosystems: Impacts, adaptation and mitigation. London: Imperial College Press; 2010:37-51. https://doi.org/10.1142/9781848166561_0004
  3. 3. Pretty J, Benton TG, Bharucha ZP, Dicks LV, Flora CB, Godfray HCJ, et al. Global assessment of agricultural system redesign for sustainable intensification. Nat Sustain. 2018;1(8):441-6. https://doi.org/10.1038/s41893-018-0114-0
  4. 4. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, et al. Food security: The challenge of feeding 9 billion people. Science. 2010;327(5967):812-8. https://doi.org/10.1126/science.1185383
  5. 5. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S. Agricultural sustainability and intensive production practices. Nature. 2002;418(6898):671-7. https://doi.org/10.1038/nature01014
  6. 6. Rockström J, Williams J, Daily G, Noble A, Matthews N, Gordon L, et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio. 2017;46(1):4-17. https://doi.org/10.1007/s13280-016-0793-6
  7. 7. Thenkabail PS, Biradar CM, Noojipady P, Dheeravath V, Li Y, Velpuri M, et al. Global cropland area database and derived statistics for 2010. Remote Sens. 2012;4(9):2272-319.
  8. 8. Food and Agriculture Organization of the United Nations. Handbook on remote sensing for agricultural statistics. Rome: FAO; 2017.
  9. 9. Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL. Satellite-based analysis of cropping intensity and yield in the Indian Punjab. Agric Syst. 2009;101(1-2):101-9.
  10. 10. Atzberger C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sens. 2013;5(2):949-81. https://doi.org/10.3390/rs5020949
  11. 11. Masser I. Governments and geographic information. 1st ed. London: CRC Press; 1998:144. https://doi.org/10.1201/9781482267891
  12. 12. Fritz S, See L, McCallum I, You L, Bun A, Moltchanova E, et al. A comparison of global agricultural monitoring systems and current gaps. Agric Syst. 2019;168:258-72. https://doi.org/10.1016/j.agsy.2018.05.010
  13. 13. Verburg PH, Neumann K, Nol L. Challenges in using land use and land cover data for global change studies. Glob Change Biol. 2011;17(2):974-89. https://doi.org/10.1111/j.1365-2486.2010.02307.x
  14. 14. Arneth A, Sitch S, Pongratz J, Stocker BD, Ciais P, Poulter B, et al. Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nat Geosci. 2017;10(2):79-84. https://doi.org/10.1038/ngeo2882
  15. 15. Burgess PJ, Rosati A, Moreno G, Papadopoulos A, Graves AR, García de Jalón S, et al. Reviewing the evidence base for the effects of agroforestry on biodiversity and ecosystem services in the UK. Environ Sci Policy. 2019;94:144-52.
  16. 16. Ramankutty N, Evan AT, Monfreda C, Foley JA. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob Biogeochem Cycles. 2008;22(1):GB1003. https://doi.org/10.1029/2007GB002952
  17. 17. Woodward BD, Houghton RA, Townsend J, Miller S, Zhang J, et al. Cloud-based remote sensing: Unlocking the potential for environmental monitoring. Front Environ Sci. 2020;8:211.
  18. 18. Food and Agriculture Organization of the United Nations (FAO). Handbook on agricultural cost of production statistics: Guidelines for data collection, compilation and dissemination. Rome: FAO; 2017. https://www.fao.org/3/i8176e/i8176e.pdf
  19. 19. Singh J. Land use and agricultural planning. In: Misra RP, Sundaram KV, editors. Million cities of India. Islamabad: Sustainable Development Policy Institute; 2000:257-69.
  20. 20. Pingali P, Aiyar A, Abraham M, Rahman A. Transforming food systems for a rising India. Singapore: Palgrave Macmillan; 2019. https://doi.org/10.1007/978-3-030-14409-8
  21. 21. Cassman KG, Wood S. Crop intensification and the role of biodiversity in agroecosystems. In: Wood S, Lipper G, editors. Valuing ecosystem services in agriculture. Rome: FAO; 2005:143-64.
  22. 22. Siebert S, Döll P, Portmann FT. Cropping intensity. In: International Food Policy Research Institute, editor. Atlas of African agriculture research and development: Revealing agriculture's place in Africa. Washington, DC: IFPRI; 2014:22-3.
  23. 23. Food and Agriculture Organization of the United Nations. The State of Food and Agriculture 2020: Overcoming water challenges in agriculture. Rome: FAO; 2020.
  24. 24. Johnston M, Foley JA, Holloway T, Kucharik C, Monfreda C. The role of irrigation in agricultural intensification. Agric Water Manag. 2009;96(6):911-7.
  25. 25. Lal R. Enhancing crop yields in the developing world through restoration of soil organic carbon. Land Degrad Dev. 2006;17(2):197-209. https://doi.org/10.1002/ldr.696
  26. 26. Vlek PLG. The challenge of enhancing soil fertility. In: Vlek PLG, Sinclair RL, Buol ST, editors. Improving soil fertility, productivity and climate resilience. Springer; 2010:3-14.
  27. 27. Aggarwal PK, Joshi PK, Ingram JSI, Gupta RK. Adapting food systems of the Indo-Gangetic plains to global environmental change: Key information needs to improve policy formulation. Environ Sci Policy. 2006;9(6):563-9.
  28. 28. Lobell DB, Burke MB. On the use of statistical models to predict crop yield responses to climate change. Agric For Meteorol. 2010;150(11):1443-52. https://doi.org/10.1016/j.agrformet.2010.07.008
  29. 29. Pingali PL, Rosegrant MW. Agricultural commercialization and diversification: Processes and policies. Food Policy. 1995;20(3):171-85.
  30. https://doi.org/10.1016/0306-9192(95)00012-4
  31. 30. Hazell PBR, Rahman A, editors. New directions for smallholder agriculture. Oxford: Oxford University Press; 2014. https://doi.org/10.1093/acprof:oso/9780199689347.001.0001
  32. 31. Dixon JA, Gulliver A, Gibbon D, Hall M. Farming systems and poverty: Improving farmers' livelihoods in a changing world. Washington, DC: World Bank; 2001. http://documents.worldbank.org/curated/en/126251468331211716
  33. 32. Fritz S, See L, You L, Justice C, Becker-Reshef I, Bydekerke L, et al. A comparison of global agricultural monitoring systems and current gaps. Agric Syst. 2019;168:258-72. https://doi.org/10.1016/j.agsy.2018.05.010
  34. 33. Siebert S, Döll P, Portmann FT. Cropping intensity. In: International Food Policy Research Institute, editor. Atlas of African agriculture research and development: Revealing agriculture's place in Africa. Washington, DC: IFPRI; 2014:22-3.
  35. 34. Lambin EF, Turner BL, Geist HJ, Agbola SB, Angelsen A, Bruce JW, et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob Environ Change. 2001;11(4):261-9. https://doi.org/10.1016/S0959-3780(01)00007-3
  36. 35. Verburg PH, Veldkamp A, Rounsevell MDA. Integrating socio-economic and spatial dynamics to explain land-use change in the Netherlands. Landsc Urban Plan. 2003;70(2-4):135-45.
  37. 36. Evans TP, Geoghegan J. Changing human-environment interactions and their impact on land use/land cover change in the United States. Reg Environ Change. 2006;6(2):71-83.
  38. 37. Radeloff VC, et al. The rise of remote sensing in ecological applications. Trends Ecol Evol. 2015;30(3):132-8.
  39. 38. Codjoe SNA. Integrating remote sensing, GIS, census and socioeconomic data in studying the population land use/cover nexus in Ghana: a literature update. Afr Dev. 2007;32(2):197-212. https://doi.org/10.4314/ad.v32i2.57188
  40. 39. Jain M, Mondal P, DeFries RS, Small C, Galford GL. Mapping cropping intensity of smallholder farms: a comparison of methods using multiple sensors. Remote Sens Environ. 2013;134:210-23. https://doi.org/10.1016/j.rse.2013.02.029
  41. 40. Heiss N, Meier J, Gessner U, Kuenzer C. Potential of Earth observation for mapping small-scale agriculture and cropping systems in West Africa: a review. Land. 2025;14:171. https://doi.org/10.3390/land14010171
  42. 41. Cornelio D. Socioeconomic drivers of land use intensification in Fiji Islands: a geographical approach. Int Arch Photogramm Remote Sens Spatial Inf Sci. 2021;XLIII-B3:837-42. https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-837-2021
  43. 42. Lobell DB, Thau D, Seifert C, Engle E, Little B. A scalable satellite-based crop yield mapper. Remote Sens Environ. 2015;164:324-33. https://doi.org/10.1016/j.rse.2015.04.021
  44. 43. Thenkabail PS, Lyon JG, Huete A, editors. Hyperspectral remote sensing of vegetation. Boca Raton: CRC Press; 2012. https://doi.org/10.1201/b11222-41
  45. 44. Doraiswamy PC, Moulin S, Cook PW, Stern A. Crop yield assessment from remote sensing. Photogramm Eng Remote Sens. 2005;71(6):699-710.
  46. 45. Becker-Reshef I, Justice CO, Sullivan M, et al. Monitoring global croplands with coarse resolution earth observations: The Global Agriculture Monitoring (GLAM) Project. Remote Sens. 2010;2(6):1589-609. https://doi.org/10.3390/rs2061589
  47. 46. Van der Velde M, See L, You L, et al. Can remote sensing and crop modeling improve subsistence farming estimates? Geosp Health. 2019;14(2):217-24.
  48. 47. FAO. Handbook on agricultural cost of production statistics: Guidelines for data collection, compilation and dissemination. Rome: Food and Agriculture Organization of the United Nations; 2017.
  49. 48. Justice CO, Townshend JRG, Holben BN, Tucker CJ. The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Trans Geosci Remote Sens. 2002;36(4):1228-49. https://doi.org/10.1109/36.701075
  50. 49. Didan K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006. NASA EOSDIS Land Processes DAAC; 2015.
  51. 50. Torres R, Snoeij P, Geudtner D, et al. GMES Sentinel-1 mission. Remote Sens Environ. 2012;120:9-24. https://doi.org/10.1016/j.rse.2011.05.028
  52. 51. European Space Agency. Sentinel-1 mission overview. 2021. https://sentinel.esa.int/web/sentinel/missions/sentinel-1
  53. 52. Balzter H, Luckman A, Skinner L. Radar remote sensing of forest ecosystems: A review. Prog Phys Geogr. 2007;31(4):403-22.
  54. 53. Inoue Y. Synergy of optical and SAR remote sensing in monitoring agricultural crops. Int J Appl Earth Obs Geoinf. 2020;92:102160.
  55. 54. Ban Y, Berger C, Ghamisi P. Multisource remote sensing data fusion: Status, challenges and opportunities. Inf Fusion. 2020;61:23-36.
  56. 55. Balzter H, Luckman A, Skinner L. All-weather monitoring of forest health with satellite radar imagery. Ann For Sci. 2001;58(5):785-801.
  57. 56. Planet Team. Planet Application Program Interface: In Space for Life on Earth. San Francisco, CA: Planet; 2017.
  58. 57. Zhang C, Kovacs JM. The application of small unmanned aerial systems for precision agriculture: A review. Precision Agriculture. 2012;13(6):693-712. https://doi.org/10.1007/s11119-012-9274-5
  59. 58. McCabe MF, Rodell M, Alsdorf DE, et al. The future of Earth observation in hydrology. Hydrol Earth Syst Sci. 2017;21(7):3879-91. https://doi.org/10.5194/hess-21-3879-2017
  60. 59. Li Z, et al. Satellite remote sensing for precision agriculture: Current status and perspectives. Remote Sens. 2017;9(10):972.
  61. 60. Maselli F, et al. Analysis of MODIS NDVI time series for natural vegetation monitoring. Ecol Indic. 2014;37:94-105.
  62. 61. Zhong Y, et al. Multi-source satellite data fusion: Status and trends. Remote Sens. 2019;11(4):482.
  63. 62. Gumma MK, Thenkabail PS, Hideto F, et al. Mapping rice areas with multi-sensor data fusion and decision tree classification for the Northern Region of Ghana, West Africa. Int J Remote Sens. 2017;38(5):1232-57.
  64. 63. Cui JT, Zhang X, Wang WS, Shen Y. Integration of optical and SAR remote sensing images for crop-type mapping based on a novel object-oriented feature selection method. Int J Agric Biol Eng. 2020;13(1):178-90. https://doi.org/10.25165/j.ijabe.20201301.5285
  65. 64. Chabalala Y, Adam E, Ali KA. Machine learning classification of fused Sentinel-1 and Sentinel-2 image data towards mapping fruit plantations in highly heterogenous landscapes. Remote Sens. 2022;14:2621. https://doi.org/10.3390/rs14112621
  66. 65. Cunha IA, Baptista GMM, Prudente VHR, Melo DD, Amaral LR. Integration of optical and synthetic aperture radar data with different synthetic aperture radar image processing techniques and development stages to improve soybean yield prediction. Agriculture. 2024;14:2032. https://doi.org/10.3390/agriculture14112032
  67. 66. Pott L, Amado TJC, Schwalbert R, Ciampitti IA. Satellite-based data fusion crop type classification and mapping in Rio Grande do Sul, Brazil. ISPRS J Photogramm Remote Sens. 2021;176:196-210. https://doi.org/10.1016/j.isprsjprs.2021.04.015
  68. 67. Li L, Zhao Y, Fu Y, Pan Y, Yu L, Xin Q. High resolution mapping of cropping cycles by fusion of Landsat and MODIS data. Remote Sens. 2017;9(12):1232. https://doi.org/10.3390/rs9121232
  69. 68. Li W, Liang S, Chen K, Chen Y, Ma H, Xu J, et al. AgriFM: a multi-source temporal remote sensing foundation model for crop mapping [preprint]. arXiv:2505.21357 [cs.CV]. 2025.
  70. 69. Reyana A, Kautish S, Karthik P, Al-Baltah I. Accelerating crop yield: multisensor data fusion and machine learning for agriculture text classification. IEEE Access. 2023;11:3249205. https://doi.org/10.1109/ACCESS.2023.3249205
  71. 70. Didan K. MODIS Vegetation Index User's Guide (MOD13 Series). University of Arizona; 2015.
  72. 71. Zhang X, Friedl MA, Schaaf CB. Monitoring vegetation phenology using MODIS. Remote Sens Environ. 2003;84(3):471-5. https://doi.org/10.1016/S0034-4257(02)00135-9
  73. 72. Sakamoto T, Gitelson AA, Arkebauer TJ, Wardlow BD. Development of a near real-time phenology algorithm for detecting crop stages using MODIS time-series data. Remote Sens Environ. 2011;115(12):3690-704.
  74. 73. Chen X, Jönsson P, Tamura M, Gu Z, Matsushita B, Eklundh L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens Environ. 2004;91(3-4):332-44. https://doi.org/10.1016/j.rse.2004.03.014
  75. 74. Jönsson P, Eklundh L. TIMESAT-a program for analyzing time-series of satellite sensor data. Comput Geosci. 2004;30(8):833-45. https://doi.org/10.1016/j.cageo.2004.05.006
  76. 75. Long T, Lu X, Li J. Mapping cropland abandonment using satellite imagery time series. Remote Sens. 2016;8(7):552.
  77. 76. Belgiu M, Drăguţ L. Random forest in remote sensing: A review of applications and future directions. ISPRS J Photogramm Remote Sens. 2016;114:24-31.
  78. https://doi.org/10.1016/j.isprsjprs.2016.01.011
  79. 77. Pelletier C, Webb GI, Petitjean F. Temporal convolutional neural network for the classification of satellite image time series. Remote Sens. 2019;11(5):523. https://doi.org/10.3390/rs11050523
  80. 78. Maxwell AE, Warner TA, Fang F. Implementation of machine learning classification in remote sensing: An applied review. Int J Remote Sens. 2018;39(9):2784-817. https://doi.org/10.1080/01431161.2018.1433343
  81. 79. Zhu XX, Tuia D, Mou L, Xia GS, Zhang L, Xu F, Fraundorfer F. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geosci Remote Sens Mag. 2017;5(4):8-36. https://doi.org/10.1109/MGRS.2017.2762307
  82. 80. Lee Y, Seo D, Paik K. Spatio-temporal deep learning for crop type classification with Sentinel-2 time series data. Remote Sens. 2020;12(21):3567.
  83. 81. Rußwurm M, Körner M. Temporal vegetation modelling using long short-term memory networks for crop identification from satellite image time series. ISPRS J Photogramm Remote Sens. 2018;145:246-58.
  84. 82. Kremer C, Lecerf R, Ceschia E, Inoue Y, Bégué A. Estimation of cropping intensity using remote sensing: A review. Agric Syst. 2019;173:449-62.
  85. 83. Thenkabail PS, Lyon JG, Huete A, editors. Hyperspectral remote sensing of vegetation. CRC Press; 2016. https://doi.org/10.1201/b11222
  86. 84. Reichstein M, Camps-Valls G, Stevens B, Jung M, Denzler J, Carvalhais N, Prabhat. Deep learning and process understanding for data-driven Earth system science. Nature. 2019;566(7743):195-204. https://doi.org/10.1038/s41586-019-0912-1
  87. 85. Wilkinson MD, Dumontier M, Aalbersberg IJ, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3:160018. https://doi.org/10.1038/sdata.2016.18
  88. 86. Morin A, Urban J, Adamson A, et al. Shining light into black boxes. Science. 2012;336(6078):159-60. https://doi.org/10.1126/science.1218263
  89. 87. Li J, Shao K, Du J, Song K, Yu W, Liang Z, et al. Comparative analysis of tillage indices and machine learning algorithms for maize residue cover prediction. Remote Sens. 2025;17:105. https://doi.org/10.3390/rs17010105
  90. 88. Li T, Leng J, Kong L, Guo S, Bai G, Wang K. DCNR: deep cube CNN with random forest for hyperspectral image classification. Multimed Tools Appl. 2019;78(3):3411-33.
  91. https://doi.org/10.1007/s11042-018-5986-5
  92. 89. Elbasi E, Zaki C, Topcu AE, Abdelbaki W, Zreikat AI, Cina E, et al. Crop prediction model using machine learning algorithms. Appl Sci. 2023;13(16):9288. https://doi.org/10.3390/app13169288
  93. 90. Biradar CM, Xiao X. Quantifying year-to-year dynamics of cropland extent and cropping intensity in India using MODIS data (2000-2008). Environ Res Lett. 2011;6(4):044014.
  94. 91. Velpuri NM, Thenkabail PS, Gumma MK, et al. Influence of precipitation on vegetation productivity across the Sahel. Remote Sens Environ. 2009;113(1):77-91.
  95. 92. Nguyen TTH, Clauss K, Cao S, et al. Mapping rice seasonality in the Mekong Delta using Sentinel-1 SAR time series. Remote Sens. 2021;13(4):720.
  96. 93. Funk C, Peterson P, Landsfeld M, et al. The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes. Sci Data. 2019;6(1):317.
  97. 94. Li Z, Jin H, Guo W, et al. A review of global cropping intensity datasets. Remote Sens. 2020;12(11):1733.
  98. 95. Graesser J, Aide TM, Grau HR, Ramankutty N. Cropland/pastureland dynamics and the slowdown of deforestation in Latin America. Environ Res Lett. 2015;10(3):034017. https://doi.org/10.1088/1748-9326/10/3/034017
  99. 96. Zalles V, Hansen MC, Potapov PV, Stehman SV, Tyukavina A, Pickens A, et al. Near doubling of Brazil's intensive row crop area since 2000. Proc Natl Acad Sci U S A. 2019;116(2):428-35. https://doi.org/10.1073/pnas.1810301115
  100. 97. van Ittersum MK, Cassman KG, Grassini P, et al. Yield gap analysis with local to global relevance-A review. Field Crops Res. 2013;143:4-17. https://doi.org/10.1016/j.fcr.2012.09.009
  101. 98. Lobell DB, Cassman KG, Field CB. Crop yield gaps: Their importance, magnitudes and causes. Annu Rev Environ Resour. 2009;34:179-204.
  102. https://doi.org/10.1146/annurev.environ.041008.093740
  103. 99. Ray DK, Foley JA. Increasing global crop harvest frequency: Recent trends and future directions. Environ Res Lett. 2013;8(4):044041.
  104. https://doi.org/10.1088/1748-9326/8/4/044041
  105. 100. Pretty J, Bharucha ZP. Sustainable intensification in agricultural systems. Ann Bot. 2014;114(8):1571-96. https://doi.org/10.1093/aob/mcu205
  106. 101. Becker-Reshef I, Justice C, Sullivan M, et al. Enhancing agricultural monitoring in Africa. Remote Sens. 2020;12(19):3156.
  107. 102. Jellema A, Meier J, Katjizeu P. Tackling data poverty in the Global South: Building capacity for Earth observation applications. Data Sci J. 2021;20(1):1-9.
  108. 103. Thornton PK, Ericksen PJ, Herrero M, Challinor AJ. Climate variability and vulnerability to climate change: A review. Glob Change Biol. 2014;20(11):3313-28. https://doi.org/10.1111/gcb.12581
  109. 104. Erb KH, Haberl H, Plutzar C. Dependence of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability. Energy Policy. 2017;47:260-9. https://doi.org/10.1016/j.enpol.2012.04.066
  110. 105. Rockström J, Steffen W, Noone K, Persson Å, Chapin FS, Lambin E, et al. A safe operating space for humanity. Nature. 2009;461(7263):472-5. https://doi.org/10.1038/461472a
  111. 106. Foerster S, Kaden K, Foerster M, Itzerott S. Crop type mapping using spectral-temporal profiles and phenological information. Comput Electron Agric. 2012;89:30-40. https://doi.org/10.1016/j.compag.2012.07.015
  112. 107. Inglada J, Arias M, Tardy B, et al. Assessment of an operational system for crop type map production using high temporal and spatial resolution satellite optical imagery. Remote Sens. 2015;7(9):12356-79. https://doi.org/10.3390/rs70912356
  113. 108. Zhu Z, Wang S, Woodcock CE. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow and snow detection for Landsats 4-7, 8 and Sentinel-2 images. Remote Sens Environ. 2015;159:269-77. https://doi.org/10.1016/j.rse.2014.12.014
  114. 109. Roy DP, Borak JS, Devadiga S, et al. The MODIS Land product quality assessment approach. Remote Sens Environ. 2010;83(1-2):62-76. https://doi.org/10.1016/S0034-4257(02)00087-1
  115. 110. Houborg R, McCabe MF. A cubesat enabled spatio-temporal enhancement method (CESTEM) utilizing Planet, Landsat and MODIS data. Remote Sens Environ. 2018;209:211-26. https://doi.org/10.1016/j.rse.2018.02.067
  116. 111. Foody GM. Assessing the accuracy of land cover change with imperfect ground reference data. Remote Sens Environ. 2010;114(10):2271-85. https://doi.org/10.1016/j.rse.2010.05.003
  117. 112. Wulder MA, Loveland TR, Roy DP, et al. Satellite time series for sustainable development. Remote Sens Environ. 2016;175:14-30.
  118. 113. Justice CO, Townshend J, Vermote E, et al. An overview of MODIS Land data processing and product status. Remote Sens Environ. 2013;83(1-2):3-15. https://doi.org/10.1016/S0034-4257(02)00084-6
  119. 114. Siebert S, Burke J, Faures JM, Frenken K, Hoogeveen J, Döll P, et al. Groundwater use for irrigation - A global inventory. Hydrol Earth Syst Sci. 2010;14(10):1863-80. https://doi.org/10.5194/hess-14-1863-2010
  120. 115. Iizumi T, Ramankutty N. How do weather and climate influence cropping area and intensity? Glob Food Secur. 2015;4:46-50. https://doi.org/10.1016/j.gfs.2014.11.003
  121. 116. Wu W, Yu Q, You L, Chen K, Tang H, Liu J. Global cropping intensity gaps: Increasing food production without cropland expansion. Land Use Policy. 2015;48:64-71.
  122. 117. Waha K, van Wijk MT, Fritz S, See L, Thornton PK, Wichern J, Herrero M. Agricultural diversification as an important strategy for achieving food security in Africa. Glob Change Biol. 2020;24(8):3390-400. https://doi.org/10.1111/gcb.14158
  123. 118. IPCC. Climate Change 2014: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2014.
  124. 119. Zhang M, Wu B, Zeng H, He G, Liu C, Tao S, et al. GCI30: a global dataset of 30 m cropping intensity using multisource remote sensing imagery. Earth Syst Sci Data. 2021;13(10):4799-817. https://doi.org/10.5194/essd-13-4799-2021
  125. 120. Zhao K, Wu S, Liu C, Wu Y, Efremova N. Precision agriculture: crop mapping using machine learning and Sentinel-2 satellite imagery [preprint]. arXiv:2403.09651 [cs.CV]. 2023.
  126. 121. Pan L, Xia H, Yang J. Mapping cropping intensity in Huaihe basin using phenology algorithm, all Sentinel-2 and Landsat images in Google Earth Engine. Int J Appl Earth Obs Geoinf. 2021;102:102376. https://doi.org/10.1016/j.jag.2021.102376
  127. 122. Posadas BB, Hanumappa M, Niewolny K, Gilbert JE. Design and evaluation of a crowdsourcing precision agriculture mobile application for Lambsquarters, Mission LQ. Agronomy. 2021;11:1951.

Downloads

Download data is not yet available.