Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Review on evolving cyclone patterns in Bay of Bengal: Challenges for coastal agriculture

DOI
https://doi.org/10.14719/pst.11369
Submitted
20 August 2025
Published
16-10-2025

Abstract

Tropical cyclones (TCs) are among the most destructive weather phenomena. This review examines the trends and drivers of TC activity, focusing on the Bay of Bengal (BoB) region. Rising global temperatures have led to warmer sea surface temperature, a key factor in TC formation and intensification. The BoB experiences an average of 5-6 cyclone annually, with peak activity in May, October and November. But pre-monsoon cyclonic storms are fewer, a higher proportion of them intensify into severe storms. Overall cyclone frequency has declined; however, their intensity and duration have increased, potentially due to climate change. Climate oscillations like the Indian Ocean Dipole (IOD) and El Nino Southern Oscillation (ENSO) significantly influence TC variability. La Nina, Negative IOD phase and the convective phase of the Madden–Julian Oscillation (MJO) enhance conditions favourable for cyclone development. These changing patterns have profound implications for agriculture in the BoB region. Cyclones often coincide with critical crop stages, causing severe yield losses. Understanding the influence of climate drivers such as ENSO and IOD on tropical cyclone activity in the Bay of Bengal is essential for developing region-specific adaptation strategies, including climate-resilient agriculture, early warning systems and sustainable land use. Future research should integrate long-term monitoring, high-resolution modelling and remote sensing to assess cyclone variability and impacts on coastal ecosystems. Emphasis on ecosystem resilience and nature-based solutions such as mangrove restoration will be critical to strengthen adaptive management, disaster preparedness and resilience under climate change-driven cyclone risks

References

  1. 1. Kailasam MK, Rao SR. Impact of global warming on tropical cyclones and monsoons. In: Global warming. IntechOpen; 2010.
  2. 2. Clements BW, Casani JAP. Hurricanes, typhoons and tropical cyclones. Disasters and public health. 2016:331-55.
  3. https://doi.org/10.1016/B978-0-12-801980-1.00014-3
  4. 3. Fink AH, Speth P. Tropical cyclones. Naturwissenschaften. 1998;85:482-93. https://doi.org/10.1007/s001140050536
  5. 4. WMO. World Meteorological Organization: Tropical cyclones. 2024. https://wmo.int/topics/tropical-cyclone
  6. 5. CREWS Initiative. World's deadliest tropical cyclone was 50 years ago. 2020. https://www.cma.gov.cn/en2014/news/News/202011/t20201113_566545.html
  7. 6. Masson-Delmotte VP, Zhai P, Pirani SL, Connors C, Péan S, Berger N, et al. IPCC, 2021: Summary for policymakers. Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. 2021;2(1):2391.
  8. 7. Sai MVRS, Murthy CS, Chandrasekar K, Jeyaseelan AT, Diwakar PG, Dadhwal VK. Agricultural drought: Assessment & monitoring. Mausam. 2016;67(1):131-42. https://doi.org/10.54302/mausam.v67i1.1155
  9. 8. Mishra A, Liu SC. Changes in precipitation pattern and risk of drought over India in the context of global warming. J Geophys Res Atmos. 2014;119(13):7833-41. https://doi.org/10.1002/2014JD021471
  10. 9. Henderson-Sellers A, Zhang H, Berz G, Emanuel K, Gray W, Landsea C, et al. Tropical cyclones and global climate change: A post-IPCC assessment. Bull Am Meteorol Soc. 1998;79(1):19-38. https://doi.org/10.1175/1520-0477(1998)079<0019:TCAGCC>2.0.CO;2
  11. 10. Knutson TR, McBride JL, Chan J, Emanuel K, Holland G, Landsea C, et al. Tropical cyclones and climate change. Nat Geosci. 2010;3(3):157-63. https://doi.org/10.1038/ngeo779
  12. 11. Walsh KJE, McBride JL, Klotzbach PJ, Balachandran S, Camargo SJ, Holland G, et al. Tropical cyclones and climate change. Wiley Interdiscip Rev Clim Change. 2016;7(1):65-89. https://doi.org/10.1002/wcc.371
  13. 12. Knutson TR, Chung MV, Vecchi G, Sun J, Hsieh T-L, Smith AJP. Climate change is probably increasing the intensity of tropical cyclones. Tyndall Centre for Climate Change Research; 2021.
  14. 13. Swain D. Tropical cyclones and coastal vulnerability: assessment and mitigation. In: Pandey A, Chowdary VM, Behera MD, Singh VP, editors. Geospatial technologies for land and water resources management. 2022:587-621. https://doi.org/10.1007/978-3-030-90479-1_30
  15. 14. Pielke RA Jr, Landsea C, Mayfield M, Layer J, Pasch R. Hurricanes and global warming. Bull Am Meteorol Soc. 2005;86(11):1571-6.
  16. https://doi.org/10.1175/BAMS-86-11-1571
  17. 15. Seneviratne S, Nicholls N, Easterling D, Goodess C, Kanae S, Kossin J, et al. Changes in climate extremes and their impacts on the natural physical environment. 2012. https://doi.org/10.1017/CBO9781139177245.006
  18. 16. Hartmann DL, Tank AMGK, Rusticucci M, Alexander LV, Brönnimann S, Charabi YAR, et al. Observations: atmosphere and surface. Climate change 2013: The physical science basis. Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press; 2013:159-254. https://doi.org/10.1017/CBO9781107415324.008
  19. 17. Gray WM. The formation of tropical cyclones. Meteorol Atmos Phys. 1998;67(1):37-69.
  20. https://doi.org/10.1007/BF01277501
  21. 18. Walsh KJE, McInnes KL, McBride JL. Climate change impacts on tropical cyclones and extreme sea levels in the South Pacific-A regional assessment. Glob Planet Change. 2012;80:149-64. https://doi.org/10.1016/j.gloplacha.2011.10.006
  22. 19. Trenberth KE, Caron JM, Stepaniak DP. The atmospheric energy budget and implications for surface fluxes and ocean heat transports. Clim Dyn. 2001;17:259-76. https://doi.org/10.1007/PL00007927
  23. 20. Sikka DR. Major advances in understanding and prediction of tropical cyclones over north Indian Ocean: a perspective. Mausam. 2006;57(1):165-96. https://doi.org/10.54302/mausam.v57i1.466
  24. 21. Tory KJ, Frank WM. Tropical cyclone formation. Global perspectives on tropical cyclones: From science to mitigation. 2010:55-91.
  25. https://doi.org/10.1142/9789814293488_0002
  26. 22. Gray WM. Global view of the origin of tropical disturbances and storms. Mon Weather Rev. 1968;96(10):669-700.
  27. https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2
  28. 23. Pelevin VN, Rostovtseva VV, Goncharenko IV. Investigation of latitudinal and seasonal characteristics of tropical cyclone generation processes using Pelevin criterion. In: Twelfth Joint International Symposium on Atmospheric and Ocean Optics/Atmos Phys. SPIE. 2006;6160:428-34. https://doi.org/10.1117/12.675459
  29. 24. Houze RA Jr. Clouds in tropical cyclones. Mon Weather Rev. 2010;138(2):293-344. https://doi.org/10.1175/2009MWR2989.1
  30. 25. Gray WM. Hurricanes: Their formation, structure and likely role in the tropical circulation. In: Meteorology over the tropical oceans. Roy Meteor Soc. 1979:155-218.
  31. 26. Emanuel K. Tropical cyclones. Annu Rev Earth Planet Sci. 2003;31(1):75-104. https://doi.org/10.1146/annurev.earth.31.100901.141259
  32. 27. Taniguchi K, Koike T. A study on the cyclogenesis and its development over the Arabian Sea. Proc Hydraul Eng. 2006;50:391-6.
  33. https://doi.org/10.2208/prohe.50.391
  34. 28. Yanai M. Formation of tropical cyclones. Rev Geophys. 1964;2(2):367-414. https://doi.org/10.1029/RG002i002p00367
  35. 29. Southern RL. The global socio-economic impact of tropical cyclones. Aust Meteorol Mag. 1979:175-95.
  36. 30. da Rocha RP, Reboita MS, Gozzo LF, Dutra LMM, de Jesus EM. Subtropical cyclones over the oceanic basins: a review. Ann N Y Acad Sci. 2019;1436(1):138-56. https://doi.org/10.1111/nyas.13927
  37. 31. Webster PJ, Holland GJ, Curry JA, Chang HR. Changes in tropical cyclone number, duration and intensity in a warming environment. Science. 2005;309(5742):1844-6. https://doi.org/10.1126/science.1116448
  38. 32. NOAA. National Oceanic and Atmospheric Administration: Tropical cyclones. 2023. https://www.noaa.gov/jetstream/tropical/tropical-cyclone-introduction
  39. 33. Murakami H. Tropical cyclones in changing climate. Handbook of air quality and climate change. 2022:1-46. https://doi.org/10.1007/978-981-15-2527-8_34-1
  40. 34. JMA. Japan Meteorological Agency: Tropical cyclones. 2023. https://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/RSMC_HP.htm
  41. 35. IMD. India Meteorological Department: Cyclones. 2023. https://mausam.imd.gov.in/imd_latest/contents/cyclone.php
  42. 36. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T. A dipole mode in the tropical Indian Ocean. Nature. 1999;401(6751):360-3.
  43. https://doi.org/10.1038/43854
  44. 37. Mousavi ME, Irish JL, Frey AE, Olivera F, Edge BL. Global warming and hurricanes: the potential impact of hurricane intensification and sea level rise on coastal flooding. Clim Change. 2011;104:575-97. https://doi.org/10.1007/s10584-009-9790-0
  45. 38. Wang C, Wang X, Weisberg RH, Black ML. Variability of tropical cyclone rapid intensification in the North Atlantic and its relationship with climate variations. Clim Dyn. 2017;49:3627-45. https://doi.org/10.1007/s00382-017-3537-9
  46. 39. Singh OP, Khan TMA, Rahman MS. Probable reasons for enhanced cyclogenesis in the Bay of Bengal during July-August of ENSO years. Global Planet Change. 2001;29(1-2):135-47. https://doi.org/10.1016/S0921-8181(00)00090-4
  47. 40. Frank NL. The deadliest tropical cyclone in history? Bull Am Meteorol Soc. 1971;52(6):438-44. https://doi.org/10.1175/1520-0477(1971)052<0438:TDTCIH>2.0.CO;2
  48. 41. Mohapatra M, Mandal GS, Bandyopadhyay BK, Tyagi A, Mohanty UC. Classification of cyclone hazard prone districts of India. Nat Hazards. 2012;63:1601-20. https://doi.org/10.1007/s11069-011-9891-8
  49. 42. IMD. Cyclone warning in India: Standard operation procedure. New Delhi; 2013.
  50. 43. Mohanty UC, Osuri KK, Pattanayak S, Sinha P. An observational perspective on tropical cyclone activity over Indian seas in a warming environment. Nat Hazards. 2012;63:1319-35. https://doi.org/10.1007/s11069-011-9810-z
  51. 44. Lupo AR. Recent developments in tropical cyclone dynamics, prediction and detection. IntechOpen; 2016.
  52. https://doi.org/10.5772/61455
  53. 45. Pandey RS, Liou YA. Decadal behaviors of tropical storm tracks in the North West Pacific Ocean. Atmos Res. 2020;246:105143.
  54. https://doi.org/10.1016/j.atmosres.2020.105143
  55. 46. Smith DK. Natural disaster reduction: How meteorological and hydrological services can help. 1989:43.
  56. 47. Tyagi A, Bandyopadhyay BK, Mohapatra M. Monitoring and prediction of cyclonic disturbances over North Indian Ocean by regional specialised meteorological centre, New Delhi (India): problems and prospective. In: Indian Ocean tropical cyclones and climate change. Springer; 2009:93-103. https://doi.org/10.1007/978-90-481-3109-9_13
  57. 48. Sugi M, Murakami H, Yoshida K. Projection of future changes in the frequency of intense tropical cyclones. Clim Dyn. 2017;49:619-32.
  58. https://doi.org/10.1007/s00382-016-3361-7
  59. 49. Mondal M, Biswas A, Haldar S, Mandal S, Bhattacharya S, Paul S. Spatio-temporal behaviours of tropical cyclones over the Bay of Bengal basin in last five decades. Trop Cyclone Res Rev. 2022;11(1):1-15. https://doi.org/10.1016/j.tcrr.2021.11.004
  60. 50. Bhardwaj P, Singh O. Climatological characteristics of Bay of Bengal tropical cyclones: 1972-2017. Theor Appl Climatol. 2020;139:615-29. https://doi.org/10.1007/s00704-019-02989-4
  61. 51. Tory KJ, Chand SS, McBride JL, Ye H, Dare RA. Projected changes in late-twenty-first-century tropical cyclone frequency in 13 coupled climate models from phase 5 of the Coupled Model Intercomparison Project. J Clim. 2013;26(24):9946-59.
  62. https://doi.org/10.1175/JCLI-D-13-00010.1
  63. 52. Murakami H, Hsu P-C, Arakawa O, Li T. Influence of model biases on projected future changes in tropical cyclone frequency of occurrence. J Clim. 2014;27(5):2159-81. https://doi.org/10.1175/JCLI-D-13-00436.1
  64. 53. Song J, Klotzbach PJ, Tang J, Wang Y. The increasing variability of tropical cyclone lifetime maximum intensity. Sci Rep. 2018;8(1):16641. https://doi.org/10.1038/s41598-018-35131-x
  65. 54. Albert J, Bhaskaran PK. Evaluation of track length, residence time and translational speed for tropical cyclones in the North Indian Ocean. ISH J Hydraul Eng. 2022;28(1):34-41. https://doi.org/10.1080/09715010.2020.1825124
  66. 55. Mahala BK, Nayak BK, Mohanty PK. Impacts of ENSO and IOD on tropical cyclone activity in the Bay of Bengal. Nat Hazards. 2015;75:1105-25. https://doi.org/10.1007/s11069-014-1360-8
  67. 56. Yuan J, Cao J. North Indian Ocean tropical cyclone activities influenced by the Indian Ocean dipole mode. Sci China Earth Sci. 2013;56:855-65. https://doi.org/10.1007/s11430-012-4559-0
  68. 57. Saji NH, Yamagata T. Structure of SST and surface wind variability during Indian Ocean dipole mode events: COADS observations. J Clim. 2003;16(16):2735-51. https://doi.org/10.1175/1520-0442(2003)016<2735:SOSASW>2.0.CO;2
  69. 58. McPhaden MJ. El Niño and La Niña: causes and global consequences. In: Encyclopedia of global environmental change. 2002;1:353-70.
  70. 59. Walker GT, Bliss EW. World weather V. Q J R Meteorol Soc. 1932;4:53-84.
  71. 60. Trenberth KE. The definition of El Niño. Bull Am Meteorol Soc. 1997;78(12):2771-8.
  72. https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2
  73. 61. Kuleshov Y, Qi L, Fawcett R, Jones D. On tropical cyclone activity in the Southern Hemisphere: trends and the ENSO connection. Geophys Res Lett. 2008;35(14). https://doi.org/10.1029/2007GL032983
  74. 62. Singh OP, Ali Khan TM, Rahman MS. Changes in the frequency of tropical cyclones over the North Indian Ocean. Meteorol Atmos Phys. 2000;75(1):11-20. https://doi.org/10.1007/s007030070011
  75. 63. Girishkumar MS, Ravichandran M. The influences of ENSO on tropical cyclone activity in the Bay of Bengal during October-December. J Geophys Res Oceans. 2012;117(C2). https://doi.org/10.1029/2011JC007417
  76. 64. Yuan Y, Li C. Decadal variability of the IOD-ENSO relationship. Chin Sci Bull. 2008;53(11):1745-52. https://doi.org/10.1007/s11434-008-0196-6
  77. 65. Matthews AJ. Propagation mechanisms for the Madden-Julian oscillation. Q J R Meteorol Soc. 2000;126(569):2637-51.
  78. https://doi.org/10.1256/smsqj.56901
  79. 66. Kikuchi K, Wang B. Formation of tropical cyclones in the northern Indian Ocean associated with two types of tropical intraseasonal oscillation modes. J Meteorol Soc Jpn. 2010;88(3):475-96. https://doi.org/10.2151/jmsj.2010-313
  80. 67. Bhardwaj P, Singh O, Pattanaik DR, Klotzbach PJ. Modulation of Bay of Bengal tropical cyclone activity by the Madden-Julian oscillation. Atmos Res. 2019;229:23-38. https://doi.org/10.1016/j.atmosres.2019.06.010
  81. 68. Zhang C. Madden-Julian oscillation: bridging weather and climate. Bull Am Meteorol Soc. 2013;94(12):1849-70.
  82. https://doi.org/10.1175/BAMS-D-12-00026.1
  83. 69. Girishkumar MS, Suprit K, Vishnu S, Prakash VPT, Ravichandran M. The role of ENSO and MJO on rapid intensification of tropical cyclones in the Bay of Bengal during October-December. Theor Appl Climatol. 2015;120:797-810.
  84. https://doi.org/10.1007/s00704-014-1214-z
  85. 70. Sharma S, Suwa R, Ray R, Mandal MSH. Successive cyclones attacked the world's largest mangrove forest located in the Bay of Bengal under pandemic. Sustainability. 2022;14(9):5130. https://doi.org/10.3390/su14095130
  86. 71. Mandal MSH, Hosaka T. Assessing cyclone disturbances (1988-2016) in the Sundarbans mangrove forests using Landsat and Google Earth Engine. Nat Hazards. 2020;102:133-50. https://doi.org/10.1007/s11069-020-03914-z
  87. 72. Mishra M, Acharyya T, Santos CAG, da Silva RM, Kar D, Kamal AHM, Raulo S. Geo-ecological impact assessment of severe cyclonic storm Amphan on Sundarban mangrove forest using geospatial technology. Estuar Coast Shelf Sci. 2021;260:107486.
  88. https://doi.org/10.1016/j.ecss.2021.107486
  89. 73. Paul S, Karan S, Bhattacharya BD. Effects of tropical cyclone Amphan on the copepods of the Ganges estuary. Mar Biol Res. 2023;19(6-7):342-54. https://doi.org/10.1080/17451000.2023.2235591
  90. 74. Feehan CJ, Filbee-Dexter K, Thomsen MS, Wernberg T, Miles T. Ecosystem damage by increasing tropical cyclones. Commun Earth Environ. 2024;5(1):674. https://doi.org/10.1038/s43247-024-01853-2
  91. 75. Gupta S, Ray A, Sarkar S, Das N, Mondal B, Haldar A. Impact of cyclone Yaas on fisheries resources of Eastern Sunderban part of West Bengal, India. Int Res J Biol Sci. 2023;12(2):42-4.
  92. 76. Barui I, Bhakta S, Ghosh K. Storm surge-induced soil salinization and its impact on agriculture in the coastal area of the Indian Sundarban. Environ Dev. 2025:101250. https://doi.org/10.1016/j.envdev.2025.101250
  93. 77. Mohammed S, Sultana F, Khan A, Ahammed S, Saimun MSR, Bhuiyan MS, et al. Assessing vulnerability to cyclone hazards in the world's largest mangrove forest, the Sundarbans: a geospatial analysis. Forests. 2024;15(10):1722.
  94. https://doi.org/10.3390/f15101722
  95. 78. Bera B, Bhattacharjee S, Sengupta N, Shit PK, Adhikary PP, Sengupta D, et al. Significant reduction of carbon stocks and changes of ecosystem service valuation of Indian Sundarban. Sci Rep. 2022;12(1):7809. https://doi.org/10.1038/s41598-022-11716-5
  96. 79. Hulsen S. Global protection from tropical cyclones by coastal ecosystems-past, present and under climate change. Research data. 2023. https://doi.org/10.31223/X59Q26

Downloads

Download data is not yet available.