Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Phytochemical profiling of bioactive compounds in Telosma cordata (Tonkin jasmine) flower extract using GC-MS technique

DOI
https://doi.org/10.14719/pst.11372
Submitted
20 August 2025
Published
14-10-2025

Abstract

This study presents a comprehensive account of Telosma cordata and related species, focusing on taxonomy, distribution and distinguishing morphological traits. To elucidate the phytochemical landscape of the species, floral samples were subjected to Gas Chromatography-Mass Spectrometry (GC-MS) analysis. The resulting chromatographic profiles revealed a diverse spectrum of primary and secondary metabolites, including volatile oils, phenolic compounds and bioactive flavonoids. The study identifies several major phytoconstituents with potential medicinal and nutritional relevance. The richness of antioxidant and antimicrobial metabolites in the methanolic extract suggests potential applications in developing natural therapeutic agents against oxidative stress and microbial infections. On the other hand, the hexane extract, dominated by heptadecanamine, indicates strong antimicrobial activity with possible use in pharmaceutical and industrial applications. Together, these findings emphasise the pharmacological potential of T. cordata flowers and justify further studies, including bioassays and formulation development.

References

  1. 1. Sowmya DH. Growth and export of floriculture in India: A Review. EPRA Int J Agric Rural Econ Res. 2024;12(2):1–5. https://doi.org/10.36713/epra0813
  2. 2. Kumarasamy N, Harshavardhini G. Production and export performance of Indian floricultural sector. Just Agric. 2021;2(2)1–6.
  3. 3. Titisari A. Floriculture: A comparative insight of environmental business opportunities in Indonesia and India. J Bisnis Kehutanan Lingkungan. 2025;2(2):122–38. https://doi.org/10.61511/jbkl.v2i2.2025.1509
  4. 4. Jing P, Yin Z, Yizhe S, Tao W, Jingya Y. Preliminary exploration of a novel type high-efficiency mosquito-repellent compound essential oil. Anim Husb Feed Sci. 2014;6(4):170.
  5. 5. Lim TK. Telosma cordata. In: Lim TK, editor. Edible medicinal and non-medicinal plants. Volume 7. Flowers. Dordrecht: Springer Netherlands. 2014. p. 107–10. https://doi.org/10.1007/978-94-007-7395-0_5
  6. 6. Wang S, Tang C, Luo F, Shao Y, Lei J, Lu C, et al. The study of phenolics from Telosma cordata (Burm. f.) Merr. flowers as α-glucosidase inhibitors: In-vitro assessment and molecular docking. Arch Clin Psychiatry. 2022;49(3). https://doi.org/10.15761/0101-60830000000434
  7. 7. Ngoitaku C, Kwannate P, Riangwong K. Total phenolic content and antioxidant activities of edible flower tea products from Thailand. Int Food Res J. 20161;23(5):2286.
  8. 8. Cajuday LA, Amparado EA. Hypoglycemic property of Telosma procumbens (Blanco) Merr. (Apocynaceae) in normal and alloxan-induced diabetic juvenile mice (Mus musculus). J Phytopharmacol. 2014;3:113–7. https://doi.org/10.31254/phyto.2014.3206
  9. 9. Buathong R, Duangsrisai S. Plant ingredients in Thai food: A well-rounded diet for natural bioactive associated with medicinal properties. Peer J. 2023;11:e14568. https://doi.org/10.7717/peerj.14568
  10. 10. Huang WuYang HW, Cai YiZhong CY, Zhang YanBo ZY. Natural phenolic compounds from medicinal herbs and dietary plants: Potential use for cancer prevention. Nutr Cancer. 2010;62(1):1-20. https://doi.org/10.1080/01635580903191585
  11. 11. Ranjan S, Chaitali RO, Sinha SK. Gas chromatography–mass spectrometry (GC-MS): A comprehensive review of synergistic combinations and their applications in the past two decades. J Anal Sci Appl Biotechnol. 2023;5(2):72–85. https://doi.org/10.48402/IMIST.PRSM/jasab-v5i2.40209
  12. 12. Al-Rubaye AF, Hameed IH, Kadhim MJ. A review: Uses of gas chromatography-mass spectrometry (GC-MS) technique for analysis of bioactive natural compounds of some plants. Int J Toxicol Pharmacol Res. 2017;9(1):81–5. https://doi.org/10.25258/ijtpr.v9i01.9042
  13. 13. Singh AK, Kumar P, Rajput VD, Mishra SK, Tiwari KN, Singh AK, et al. Phytochemicals, antioxidant, anti-inflammatory studies and identification of bioactive compounds using GC–MS of ethanolic novel polyherbal extract. Appl Biochem Biotechnol. 2023;195(7):4447–68.
  14. 14. Canales M, Skarmoutsos I, Guardia E. A comprehensive molecular dynamics simulation of plastic and liquid succinonitrile: Structural, dynamic and dielectric properties. J Chem Phys. 2024;161(17). https://doi.org/10.1063/5.0230695
  15. 15. Hassan MG, Elmezain WA, Baraka DM, AboElmaaty SA, Elhassanein A, Ibrahim RM, et al. Anti-cancer and anti-oxidant bioactive metabolites from Aspergillus fumigatus WA7S6 isolated from marine sources: In vitro and in silico studies. Microorganisms. 2024;12(1):127. https://doi.org/10.3390/microorganisms12010127
  16. 16. Jaruan O, Promsan S, Thongnak L, Pengrattanachot N, Phengpol N, Sutthasupha P, et al. Pyridoxine exerts antioxidant effects on kidney injury manifestations in high-fat diet-induced obese rats. Chem Biol Interact. 2025;415:111513. https://doi.org/10.1016/j.cbi.2025.111513
  17. 17. Liu F, Smith AD, Wang TT, Pham Q, Cheung L, Yang H, et al. Biological pathways via which the anthocyanin malvidin alleviated the murine colitis induced by Citrobacter rodentium. Food Funct. 2023;14(2):1048–61. https://doi.org/10.1039/d2fo02873e
  18. 18. Gahtori R, Tripathi AH, Chand G, Pande A, Joshi P, Rai RC, et al. Phytochemical screening of Nyctanthes arbor-tristis plant extracts and their antioxidant and antibacterial activity analysis. Appl Biochem Biotechnol. 2024;196(1):436–56. https://doi.org/10.1007/s12010-023-04552-4
  19. 19. Salman HA, Yaakop AS, Al-Rimawi F, Makhtar AM, Mousa M, Semreen MH, et al. Ephedra alte extracts' GC-MS profiles and antimicrobial activity against multidrug-resistant pathogens (MRSA). Heliyon. 2024;10(5). https://doi.org/10.1016/j.heliyon.2024.e27051
  20. 20. Davoudi M, Damroudi Y, Afsharnia R, Vanin FM, Javanmardi F, Mousavi Khaneghah A. Effect of substitution of sugar with xylitol and maltitol on characteristics and quality of cakes: A systematic review and meta-analysis. Cereal Chem. 2023;100(2):256–67. https://doi.org/10.1002/cche.10622
  21. 21. Al-Douri NA, Shakya AK. Fatty Acids analysis and antioxidant activity of a lipid extract obtained from Mercurialis annua L. grown wildly in Jordan. Acta Pol Pharm Drug Res. 2019;76(2):275–81. https://doi.org/10.32383/appdr/97344
  22. 22. Rossi R, Carpita A. Stereospecific synthesis of (Z)-13-hexadecen-11-YN-1-YL acetate: The sex pheromone of the processionary moth and of (5z, 7e)-5, 7-dodecadien-1-ol, a sex pheromone component of the forest tent caterpillar. Tetrahedron. 1983;39(2):287–90. https://doi.org/10.1002/chin.198324358
  23. 23. Saif AQ, Quradha MM, Khan R, Rauf A. GC-MS analysis, antioxidant and antibacterial activities of fixed oil from Cyphostemma digitatum leaves. Int J Food Prop. 2025;28(1):2484253. https://doi.org/10.1080/10942912.2025.2484253
  24. 24. Walters D, Raynor L, Mitchell A, Walker R, Walker K. Antifungal activities of four fatty acids against plant pathogenic fungi. Mycopathologia. 2004;157(1):87–90. https://doi.org/10.1023/b:myco.0000012222.68156.2c
  25. 25. Tao Q, Xiao G, Wang T, Zhang L, Yu M, Peng L, et al. Identification of linoleic acid as an antithrombotic component of Wenxin Keli via selective inhibition of p-selectin-mediated platelet activation. Biomed Pharmacother. 2022;153:113453. https://doi.org/10.1016/j.biopha.2022.113453
  26. 26. Arsiningtyas IS, Simamora DD, Palimbongan AM, Widianingtyas FD, Junedi S. In vitro anti-photoaging properties of Phylanthus urinaria L. herb extract. Indones J Cancer Chemoprev. 2024;15(1):26–39.
  27. https://doi.org/10.14499/indonesianjcanchemoprev15iss1pp26-39
  28. 27. Lourenco MC, de Souza MV, Pinheiro AC, Ferreira MD, Gonçalves RS, Nogueira TC, et al. Evaluation of anti-tubercular activity of nicotinic and isoniazid analogues. Arkivoc. 2007;15:181–91. https://doi.org/10.3998/ark.5550190.0008.f18
  29. 28. Lim MW, Quan Tang Y, Aroua MK, Gew LT. Glycerol extraction of bioactive compounds from Thanaka (Hesperethusa crenulata) bark through LCMS profiling and their antioxidant properties. ACS Omega. 2024;9(12):14388–405. https://doi.org/10.1021/acsomega.4c00041
  30. 29. Freitas M, Ribeiro D, Janela JS, Varela CL, Costa SC, da Silva ET, et al. Plant-derived and dietary phenolic cinnamic acid derivatives: Anti-inflammatory properties. Food Chem. 2024;459:140080. https://doi.org/10.1016/j.foodchem.2024.140080
  31. 30. Masuku M, Mozirandi W, Mukanganyama S. Evaluation of the antibacterial and antibiofilm effects of ethyl acetate root extracts from Vernonia adoensis (Asteraceae) against Pseudomonas aeruginosa. Sci World J. 2023;2023(1):5782656. https://doi.org/10.1155/2023/5782656
  32. 31. Tassakka AC, Sumule O, Massi MN, Manggau M, Iskandar IW, Alam JF, et al. Potential bioactive compounds as SARS-CoV-2 inhibitors from extracts of the marine red alga Halymenia durvillei (Rhodophyta)–A computational study. Arab J Chem. 2021;14(11):103393. https://doi.org/10.1016/j.arabjc.2021.103393
  33. 32. Langfeld LQ, Du K, Bereswill S, Heimesaat MM. A review of the antimicrobial and immune-modulatory properties of the gut microbiota-derived short chain fatty acid propionate–What is new?. Eur J Microbiol Immunol. 2021;11(2):50–6. https://doi.org/10.1556/1886.2021.00005
  34. 33. Sait Ertuğrul M, Balpınar Ö, Can Aytar E, Aydın B, Incilay Torunoglu E, Durmaz A, et al. Antioxidant, antimicrobial, anticancer and molecular docking insights into Pancratium maritimum seeds and flowers: A phytochemical approach. Chem Open. 2025;14(2):e202400407. https://doi.org/10.1002/open.202400407
  35. 34. Ramesh D, Vijayakumar BG, Kannan T. Therapeutic potential of uracil and its derivatives in countering pathogenic and physiological disorders. Eur J Med Chem. 2020;207:112801. https://doi.org/10.1016/j.ejmech.2020.112801
  36. 35. Al-Baadani WA, Al-Samman AM, Anantacharya R, Satyanarayan ND, Siddique NA, Maqati AA. Cytotoxicity effect and antioxidant potential of 5-Hydroxymethyl Furfural (5-HMF) analogues: An advance approach. J Phytol. 2024;16:114–20. https://doi.org/10.25081/jp.2024.v16.8817
  37. 36. Jalaleddine N, Hachim M, Al-Hroub H, Saheb Sharif-Askari N, Senok A, Elmoselhi A, et al. N6-acetyl-L-lysine and p-cresol as key metabolites in the pathogenesis of COVID-19 in obese patients. Front Immunol. 2022;13:827603. https://doi.org/10.3389/fimmu.2022.827603
  38. 37. Clifton ME, Lopez K. Assessing insect growth regulator resistance using bioassays: A systematic review and meta-analysis of methoprene and pyriproxyfen inhibition of emergence in three vector mosquito species. Trop Med Infect Dis. 2025;10(4):87. https://doi.org/10.3390/tropicalmed10040087
  39. 38. Maralani MN, Movahedian A, Javanmard SH. Antioxidant and cytoprotective effects of L-Serine on human endothelial cells. Res Pharm Sci. 2012;7(4):209.
  40. 39. Nivrutti GP. Furan: A Promising Scaffold for Biological Activity. Int J Adv Biol Biomed Res. 2024;12:167–81.
  41. 40. Francisco-Marquez M, Aguilar-Fernández M, Galano A. Anthranilic acid as a secondary antioxidant: Implications to the inhibition of OH production and the associated oxidative stress. Comput Theor Chem. 2016;1077:18–24. https://doi.org/10.1016/j.comptc.2015.09.025
  42. 41. Chamlagain M, Hu J, Sionov RV, Steinberg D. Anti-bacterial and anti-biofilm activities of arachidonic acid against the cariogenic bacterium Streptococcus mutans. Front Microbiol. 2024;15:1333274. https://doi.org/10.3389/fmicb.2024.1333274
  43. 42. Sanabria-Ríos DJ, Morales-Guzmán C, Mooney J, Medina S, Pereles-De-León T, Rivera-Román A, et al. Antibacterial activity of hexadecynoic acid isomers toward clinical isolates of multidrug-resistant Staphylococcus aureus. Lipids. 2020;55(2):101–16. https://doi.org/10.1002/lipd.12213
  44. 43. Singh BR, Chandra M, Bhardwaj M, Jayakumar V, Kumar A. A study on antimicrobial effect of sugars at low concentration. Infect Dis Res. 2025;6(1):1. https://doi.org/10.53388/idr2025001
  45. 44. SP D, MVNL C. Isolation of methyl gamma linolenate from Spirulina platensis using flash chromatography and its apoptosis inducing effect. BMC Complement Altern Med. 2015;15(1):1–8. https://doi.org/10.1186/s12906-015-0771-8
  46. 45. Sprecher H. The synthesis and metabolism of hexadeca-4, 7, 10-trienoate, eicosa-8, 11, 14-trienoate, docosa-10, 13, 16-trienoate and docosa-6, 9, 12, 15-tetraenoate in the rat. Biochim Biophys Acta Lipids Lipid Metab. 1968;152(3):519–30.
  47. https://doi.org/10.1186/s12906-015-0771-8
  48. 46. Sivakumaran G, Rao MR, Prabhu K, Kalaiselvi VS, Jones S, Johnson WM, et al. Preliminary GC-MS anlaysis and antioxidant study of one ayurvedic medicine “Manasa Mitra Vatakam”. Int J Pharm Sci Rev Res. 2016;37(1):190–9.
  49. 47. Nuiyen A, Rattanasri A, Wipa P, Roytrakul S, Wangteeraprasert A, Pongcharoen S, et al. Lack of Nck1 protein and Nck-CD3 interaction caused the increment of lipid content in Jurkat T cells. BMC Mol Cell Biol. 2022;23(1):36. https://doi.org/10.1186/s12860-022-00436-3
  50. 48. Marzuki NH, Mahat NA, Huyop F, Aboul-Enein HY, Wahab RA. Sustainable production of the emulsifier methyl oleate by Candida rugosa lipase nanoconjugates. Food Bioprod Process. 2015;96:211–20. https://doi.org/10.1016/j.fbp.2015.08.005
  51. 49. Akar Z. Chemical compositions by using LC–MS/MS and GC–MS and antioxidant activities of methanolic extracts from leaf and flower parts of Scabiosa columbaria subsp. columbaria var. columbaria L. Saudi J Biol Sci. 2021;28(11):6639–44. https://doi.org/10.1016/j.sjbs.2021.07.039
  52. 50. Hine DG, Hack AM, Goodman SI, Tanaka K. Stable isotope dilution analysis of isovalerylglycine in amniotic fluid and urine and its application for the prenatal diagnosis of isovaleric acidemia. Pediatr Res. 1986;20(3):222–6.
  53. https://doi.org/10.1203/00006450-198603000-00005
  54. 51. Tang Q, Tan P, Ma N, Ma X. Physiological functions of threonine in animals: Beyond nutrition metabolism. Nutrients. 2021;13(8):2592. https://doi.org/10.3390/nu13082592
  55. 52. Morgan ED, Wilson ID. Miscellaneous natural products including marine natural products, pheromones, plant hormones and aspects of ecology, Mori K, editor. s. London: Pergamon Press. Oxford. https://doi.org/10.1016/s0031-9422(01)00370-3
  56. 53. Ehtiati S, Hatami B, Khatami SH, Tajernarenj K, Abdi S, Sirati-Sabet M, et al. The multifaceted influence of beta-hydroxybutyrate on autophagy, mitochondrial metabolism and epigenetic regulation. J Cell Biochem. 2025;126(6):e70050. https://doi.org/10.25081/josac.2023.v32.i1.8592
  57. 54. Akhilraj BC, Suresh J, Rajamani K, Kumar M, Gnanam R. Exploring the therapeutic potential of volatile bioactive compounds from different parts of Tinospora cordifolia: a gas chromatography-mass spectrometry (GC-MS) study. J Spices Aromatic Crops. 2023;32(1). https://doi.org/10.25081/josac.2023.v32.i1.8592
  58. 55. Tao Q, Xiao G, Wang T, Zhang L, Yu M, Peng L, et al. Identification of linoleic acid as an antithrombotic component of Wenxin Keli via selective inhibition of p-selectin-mediated platelet activation. Biomed Pharmacother. 2022;153:113453. https://doi.org/10.1016/j.biopha.2022.113453
  59. 56. Devappa RK, Rakshit SK, Dekker RF. Forest biorefinery: Potential of poplar phytochemicals as value-added co-products. Biotechnol Adv. 2015;33(6):681–716. https://doi.org/10.1016/j.biotechadv.2015.02.015
  60. 57. Zhai Y, Feng B, Yuan W, Ao C, Zhang L. Experimental and modelling studies of small typical methyl esters pyrolysis: Methyl butanoate and methyl crotonate. Combust Flame. 2018;191:160–74. https://doi.org/10.1016/j.combustflame.2017.12.033
  61. 58. Benea IC, Kántor I, Todea A, Pellis A, Bîtcan I, Nagy L, et al. Biocatalytic synthesis of new polyesteramides from ε-caprolactam and hydroxy acids: Structural characterization, biodegradability and suitability as drug nanocarriers. React Funct Polym. 2023;191:105702. https://doi.org/10.1016/j.reactfunctpolym.2023.105702
  62. 59. Yun EJ, Lee AR, Kim JH, Cho KM, Kim KH. 3, 6-Anhydro-l-galactose, a rare sugar from agar, a new anticariogenic sugar to replace xylitol. Food Chem. 2017;221:976–83. https://doi.org/10.1016/j.foodchem.2016.11.066
  63. 60. Adebayo IA, Arsad H, Samian MR. Methyl elaidate: A major compound of potential anticancer extract of Moringa oleifera seeds binds with bax and MDM2 (p53 inhibitor) In silico. Pharmacogn Mag. 2018;14(59s). https://doi.org/10.4103/pm.pm_125_18
  64. 61. Aam BB, Fonnum F. (±)-2-Chloropropionic acid elevates reactive oxygen species formation in human neutrophil granulocytes. Toxicology. 2006;228(2-3):124–34. https://doi.org/10.1016/j.tox.2006.08.024
  65. 62. Kaur P, Dubey GP, Rani S. Thermo-physical and spectral investigations of binary liquid mixture of 2-(2-butoxyethoxy) ethanol with alcohols at temperature range of 293.15 K to 313.15 K. J Chem Thermodyn. 2020;141:105983. https://doi.org/10.1016/j.jct.2019.105983
  66. 63. Joshi K, Adhikari P, Bhatt ID, Pande V. Source dependent variation in phenolics, antioxidant and antimicrobial activity of Paeonia emodi in west Himalaya, India. Physiol Mol Biol Plants. 2022;28(9):1785–98. https://doi.org/10.1007/s12298-022-01242-z
  67. 64. Huang K, Ashby R, Fan X, Moreau RA, Strahan GD, Nuñez A, et al. Phenolic fatty acid-based epoxy curing agent for antimicrobial epoxy polymers. Prog Org Coat. 2020;141:105536. https://doi.org/10.1016/j.porgcoat.2019.105536
  68. 65. Dercksen M, Koekemoer G, Duran M, Wanders RJ, Mienie LJ, Reinecke CJ. Organic acid profile of isovaleric acidemia: A comprehensive metabolomics approach. Metabolomics. 2013;9(4):765–77. https://doi.org/10.1007/s11306-013-0501-5

Downloads

Download data is not yet available.