Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

First record of wood-rotting fungal diversity in dry deciduous forest of Savandurga, Karnataka, India

DOI
https://doi.org/10.14719/pst.11392
Submitted
21 August 2025
Published
28-01-2026

Abstract

Wood-rotting fungi (WRF) are renowned for their ecological roles, medicinal properties and ligninolytic capabilities. A survey was conducted from April 2023 to December 2024 in the Savandurga dry deciduous forest, Ramanagara district of Bengaluru, Karnataka, India, an area characterised by dense bamboo groves, shrubs and diverse tree species. The study aimed to collect, identify and document WRF using an integrative approach to morphological analysis. The survey identified 32 wood-rotting fungal species associated with different hosts, which includes Arcyria denudata Fr., Auricularia auricula-judae (Bull.) Quél., Coprinellus disseminatus (Pers.) J.E. Lange, Cantharellus spathularia (Schwein.) Schwein., Daldinia concentrica (Bolton) Ces. & De Not., Entonaema splendens (Berk. & M.A. Curtis) Lloyd, Fomitopsis quercina (L.) Spirin & Miettinen, Fulvifomes robiniae (Murrill) Murrill, Fuscoporia gilva (Schwein.) T. Wagner & M. Fisch., Ganoderma adspersum (Schulzer) Donk, G. applanatum (Pers.) Pat., G. gibbosum (Blume & T. Nees) Pat., G. lucidum (Curtis) P. Karst., G. sessile Murrill, Pseudofavolus tenuis (Fr.) G. Cunn., Bull.,  Inonotus obliquus (Fr.) Pilát, Lentinus polychrous Lév., Collybia nuda (Bull.) Z.M. He & Zhu L. Yang, Marasmius haematocephalus (Mont.) Fr., Microporus xanthopus (Fr.) Kuntze, Lentinus sajor-caju (Fr.) Fr., Fabisporus sanguineus (L.) Zmitr., Schizophyllum commune Fr., Stemonitis splendens Rostaf., Trametes gibbosa (Pers.) Fr., Earliella scabrosa (Pers.) Gilb. & Ryvarden, Xylaria hypoxylon (L.) Grev., X. longipes Nitschke, X. polymorpha (Pers.) Grev., were new reports to Savandurga and Candolleomyces asiaticus Asif, Izhar, Niazi & Khalid and Cellulariella acuta (Berk.) Zmitr. & Malysheva are reported for the first time from India macro– and microscopic characteristics provide information about the diversity of wood-rotting fungi in the region.

References

  1. 1. Crous PW. How many species of fungi are there in the tip of Africa? Stud Mycol. 2006;55:13. https://doi.org/10.3114/sim.55.1.13
  2. 2. Hawksworth DL, Lücking R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr. 2017;5(4). https://doi.org/10.1128/microbiolspec
  3. 3. Kirk PM, Cannon PF, Minter DW, Stalpers JA. Dictionary of the Fungi. 10th ed. Wallingford: CABI; 2008.
  4. 4. Mueller GM, Schmit JP, Leacock PR, Buyck B, Cifuentes J, Desjardin DE. Global diversity and distribution of macrofungi. Biodivers Conserv. 2007;16:37–48. https://doi.org/10.1007/s10531-006-9108-8
  5. 5. Blackwell M. The fungi: 1, 2, 3 … 5.1 million species? Am J Bot. 2011;98(3):426–38. https://doi.org/10.3732/ajb.1000298
  6. 6. Kuo M. Morels. Ann Arbor: University of Michigan Press; 2005. https://doi.org/10.3998/mpub.93422
  7. 7. Zhao R, Chen J, Xu J. Clavarioid fungi in China: diversity and distribution. Fungal Divers. 2016;81(1):1–22.
  8. 8. Rathod MM. A study on wood-decaying fungi from the forests of Western Maharashtra, India. Int J Curr Microbiol Appl Sci. 2016;5(3):520–7. https://doi.org/10.20546/ijcmas.2016.503.061
  9. 9. Gautam AK. Notes on wood rotting fungi from India (1): Trametes versicolor-the turkey tail. New Biol Rep. 2013;2(2):67–70.
  10. 10. Karthikeyan S, Ramasamy K, Prabhakaran J. Conversion of industrial solid wastes to value-added products by filamentous bacteria. Madras Agric J. 2005;92:515–22. https://doi.org/10.29321/MAJ.10.A01353
  11. 11. Murali KS, Kavitha A, Harish RP. Spatial patterns of tree and shrub species diversity in Savandurga State Forest, Karnataka. Curr Sci. 2003;84(6):808–13.
  12. 12. Yamashita S, Hattori T, Abe H. Host preference and species richness of wood-inhabiting aphyllophoraceous fungi in a cool temperate area of Japan. Mycologia. 2010;102:11–19. https://doi.org/10.3852/09-008
  13. 13. Mohanan C. Macrofungi of Kerala. KFRI Handbook No. 27. Peechi: Kerala Forest Research Institute; 2011. p. 597.
  14. 14. Yuan Q, Li Y, Dai Y, Wang K, Wang Y, Zhao C. Morphological and molecular identification of four new wood-inhabiting species of Lyomyces (Basidiomycota) from China. MycoKeys. 2024;110:67–92. https://doi.org/10.3897/mycokeys.110.133108
  15. 15. Karunarathna SC, Samarakoon MC, Senanayake IC. Recent advances in fungal taxonomy and phylogeny. N Z J Bot. 2024;62(2–3):119–22. https://doi.org/10.1080/0028825X.2024.2369351
  16. 16. Kim J. Fungal identification based on the polyphasic approach: a clinical practice guideline. Ann Clin Microbiol. 2024;27(4):221–30. https://doi.org/10.5145/ACM.2024.27.4.2
  17. 17. Margalef R. Correspondence between the classic types of lakes and the structural and dynamic properties of their population. Verh Int Ver Theor Angew Limnol. 2008;15:169–70.
  18. 18. Simpson EH. Measurement of diversity. Nature. 1949;163(4148):688. https://doi.org/10.1038/163688a0
  19. 19. Pielou EC. The measurement of diversity in different types of biological collections. J Theor Biol. 1966;13:131–44. https://doi.org/10.1016/0022-5193(66)90013-0
  20. 20. Bharath Kumar S, Muthu Kumar A, Nagadesi PK. New host record, phenotypic and genotypic identification: one new species of Ganoderma from the Western Ghats of Karnataka, India. J Sustain For. 2025. https://doi.org/10.1080/10549811.2025.2525204
  21. 21. Özbey BG, İşlek C, Baba H, Sevindik M. Antioxidant, antimicrobial, oxidant and element contents of Xylaria polymorpha and X. hypoxylon. Fresenius Environ Bull. 2021;30(5):5400–04.
  22. 22. Bankole PO, Omoni VT, Tennison-Omovoh CA, Adebajo SO, Mulla SI, Adekunle AA, et al. Novel laccase from Xylaria polymorpha and its efficiency in the biotransformation of pharmaceuticals. Colloids Surf B Biointerfaces. 2022;217:112675. https://doi.org/10.1016/j.colsurfb.2022.112675
  23. 23. Ematou NLN, Njouonkou AL, Moundipa FP. Assessment of extracellular enzymes in mycelial culture of some fungi from the Western Highlands of Cameroon. J Mater Environ Sci. 2025;16(2):328–40.
  24. 24. Jensen B, Coolen BF, Smit TH. Hymenophore configuration of the oak mazegill (Daedalea quercina). Mycology. 2020;11(4):895–907. https://doi.org/10.1080/00275514.2020.1785197
  25. 25. inimundy TC, Barros L, Calhelha RC, Alves MJ, Prieto MA, Abreu RMV, et al. Multifunctions of Pleurotus sajor-caju (Fr.) Singer. Food Chem. 2018;245:150–58. https://doi.org/10.1016/j.foodchem.2017.10.088
  26. 26. Yu T, Wu Q, Liang B, Zhang J, Chen Y, Shang X, et al. Polysaccharide processing technology of Auricularia auricula. Molecules. 2023;28(2):582. https://doi.org/10.3390/molecules28020582
  27. 27. Li J, Li LQ, Long HP, Liu J, Jiang YP, Xue Y, et al. Xylarinaps A–E from Xylaria nigripes. Phytochemistry. 2021;185:112729. https://doi.org/10.1016/j.phytochem.2021.112729
  28. 28. Wang QY, Chen HP, Liu JK. Isopimarane diterpenes from Xylaria longipes. Phytochem Lett. 2021;45:100–4. https://doi.org/10.1016/j.phytol.2021.08.005
  29. 29. Keekan KK, Ranadive KR, Naik P, Sendker J, Padmaraj SR, et al. Anti-MRSA activity of Xylaria longipes. Pharm Chem J. 2022;56:958–65. https://doi.org/10.1007/s11094-022-02733-9
  30. 30. Luangharn T, Karunarathna SC, Dutta AK, Paloi S, Promputtha I, Hyde KD, et al. Ganoderma species from the Greater Mekong Subregion. J Fungi. 2021;7(10):819. https://doi.org/10.3390/jof7100819
  31. 31. Cho SE, Lee SG, Kim MS, Park SH, Park JB, Kim NK, et al. First report of Ganoderma gibbosum in Korea. J Asia Pac Biodivers. 2024;17(2):228–31. https://doi.org/10.1016/j.japb.2023.12.005
  32. 32. Lu J, Fu J, Lin X, Jin L, Guo Y, Liu X, et al. Ganoderma sessile restrains Treg recruitment. J Funct Foods. 2024;123:106573. https://doi.org/10.1016/j.jff.2024.106573
  33. 33. Viceconte FR, Diaz ML, Soresi DS, Lencinas IB, Carrera A, Prat MI, et al. Ganoderma sessile polysaccharide production. Mycologia. 2021;113(3):513–24. https://doi.org/10.1080/00275514.2020.1870255
  34. 34. Huang X, Shi L, Lin Y, Zhang C, Liu P, Zhang R, et al. Pycnoporus sanguineus polysaccharides. Int J Nanomedicine. 2023;18:6021–35. https://doi.org/10.2147/IJN.S427055
  35. 35. Bourdette JOO, Ndong HCE, Bourobou HPB, Engonga LCO. Pycnoporus sanguineus bioactivities. World J Biol Pharm Res. 2022;3(1):1–8. https://doi.org/10.53346/wjbpr.2022.3.1.0039
  36. 36. Asif M, Izhar A, Niazi AR, Khalid AN. Candolleomyces asiaticus sp. nov. Eur J Taxon. 2022;826:176–187. https://doi.org/10.5852/ejt.2022.826.1845
  37. 37. Nandan Patel KJ, Kantharaja R, Krishnappa M, Krishna V. Entonaema liquescens, a new record for India. Zoo’s Print. 2022;37(8):1–3.
  38. 38. Pošta A, Matočec N, Kušan I, Tkalčec Z, Mešić A, et al. The lignicolous genus Entonaema. Forests. 2023;14(9):1764. https://doi.org/10.3390/f14091764
  39. 39. Nguyen TM, Kim J, Nguyen TH, Nguyen HT, Do BD, Do TH, et al. Antioxidant and antimicrobial properties of Phellinus robiniae. Int J Med Mushrooms. 2023;25(3):37–46. https://doi.org/10.1615/IntJMedMushrooms.2022047243
  40. 40. Lu Y, Jia Y, Xue Z, Li N, Liu J, Chen H, et al. Inonotus obliquus polysaccharides. Polymers (Basel). 2021;13(9):1441. https://doi.org/10.3390/polym13091441
  41. 41. Ern PTY, Quan TY, Yee FS, Yin ACY. Therapeutic properties of Inonotus obliquus. Mycology. 2023;15(2):144–61. https://doi.org/10.1080/21501203.2023.2260408
  42. 42. Fangkrathok N. Chemical constituents of Lentinus polychrous. Isan J Pharm Sci. 2019;15(1).
  43. 43. Gurav KN, Patil VP. Bioactive components of Microporus xanthopus. Biol Forum Int J. 2023;15(4):70–82.
  44. 44. Gebreyohannes G, Sbhatu DB. Wild mushrooms as bioactive resources. Int J Anal Chem. 2023;2023:6694961. https://doi.org/10.1155/2023/6694961
  45. 45. Kamata K, Suetsugu T, Yamamoto Y, Ishibashi M. Bisindole alkaloids from Arcyria denudata. J Nat Prod. 2006;69(8):1252–4. https://doi.org/10.1021/np060269h
  46. 46. Sharma BP, Mishra S, Kumar S. Dacryopinax spathularia. In: Edible and Medicinal Mushrooms of India. Vol 1. APRF; 2024. https://doi.org/10.5281/zenodo.10863885
  47. 47. Novaković A, Karaman M, Milovanović I. Coprinellus disseminatus. Food Feed Res. 2018;45(7):119–28. https://doi.org/10.5937/FFR1802119N
  48. 48. Kuhnert E, Surup F, Sir EB. Azaphilones from Hypoxylon lenormandii. Fungal Divers. 2015;71:165–184. https://doi.org/10.1007/s13225-014-0318-1
  49. 49. De AB. New host record of Hexagonia tenuis. Plant Pathol Quarantine. 2018;8(1):58–62. https://doi.org/10.5943/ppq/8/1/8
  50. 50. Aneesh S, Thoppil JE. Cytotoxicity of Hexagonia tenuis. Int J Pharm Biol Sci. 2019;9(3):822–831.

Downloads

Download data is not yet available.