Skip to main navigation menu Skip to main content Skip to site footer

Research communications

Vol. 2 No. 2 (2015)

Cytopathology, biology and molecular characterization of two Italian isolates of Malva vein clearing virus

DOI
https://doi.org/10.14719/pst.2015.2.2.114
Submitted
10 December 2014
Published
08-04-2015

Abstract

Two Italian isolates of Malva vein clearing virus (MVCV), naturally infecting Malva sylvestris (common mallow) plants, were characterized at biological, serological and molecular level. Experimental host range was comparable for both isolates and in agreement with those reported for other MVCV isolates. Cytopathology observed indicated type I of cylindrical inclusions caused by both isolates in common mallow. The 3’ genome extremity of about 1800 nucleotides was sequenced for both isolates. It comprised of the 3’ end of the NIb gene, the entire putative ORF of the coat protein (CP) and the 3’ non-translated region of genome. Phylogenetic analysis based on CP gene did not shown any statistically significant grouping among ten different MVCV isolates, suggesting low level of variability among the MVCV isolates genetically characterized until now.

References

  1. Adams, M. J., J. F. Antoniw and F. Beaudion. 2005. Overview and analysis of the polyprotein cleavage sites in the family Potyviridae. Molecular Plant Pathology 6: 471-487. doi: 10.1111/j.1364-3703.2005.00296.x
  2. Andrew, M. Q. K., J. A. Michael, E. B. Carstens and J. L. Elliot. 2012. Virus taxonomy. Classification and nomenclature. 9th Report of the committee on Taxonomy of Viruses. Elsevier Academic Press, San Diego.
  3. Berger, P. H., M. J. Adams, O. W. Barnett, A. A. Brunt, J. Hammond, J. H. Hill, R. L. Jordan, S. Kashiwazaki, E. Rybicki, N. Spence, D. C. Stenger, S. T. Ohki, I. Uyeda, A. van Zaayen, J. Valkonen and H. J. Vetten. 2005. Potyviridae. In: Virus taxonomy, Eighth Report of the International Committee on Taxonomy of Viruses (Eds. Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA), Elsevier/Academic Press, London, pp. 819-841.
  4. Costa, A. S., and J. E. Duffus. 1957. Occurrence of malva yellow vein mosaic in California. Plant Disease Reports 41: 1006-1008.
  5. Delécolle, B. 1978. Essais de rationalisation des méthodes de préparation d’échantillons végétaux pour la microscopie électronique: problème des précipités parasites. Cellular and Molecular Biology 23: 431-436.
  6. Domier, L. L., J. G. Shaw and R. E. Rhoads. 1987. Potyviral proteins share amino acid sequence homology with picorna-, como-, and caulimoviral proteins. Virology 158: 20-27. doi: 10.1016/0042-6822(87)90233-9
  7. Edwardson, J. R., and R. G. Christie. 1996. Cylindrical inclusions. Univ. Fla. Agric. Exp. Stn. Bull. 894. Gainesville.
  8. Gibbs, A., and A. Mackenzie. 1997. A primer pair for amplifying part of the genome of all potyvirids by RT-PCR. Journal of Virological Methods 63: 9-16. doi: 10.1016/S0166-0934(96)02103-9
  9. Hein, A. 1956. Beiträge zur Kenntnis der Viruskrankheiten an Unkräutern. I. Das Malva-Virus. Phytopathologische Zeitschrift 28: 205-234.
  10. Heinrich, M., J. Barnes, S. Gibbons and E. M. Williamson. 2012. Fundamentals of pharmacognosy and phytotherapy. 2nd edition. Elsevier, Edinburgh, pp 326.
  11. Horváth, J., Dj. Manula, W. H. Besada and N. Juretic. 1979. Some properties of Malva vein Clearing Virus isolated in Hungary and Yugoslavia. Phytopathologische Zeitschrift 95: 51-58. doi: 10.1111/j.1439-0434.1979.tb01577.x
  12. ICTVdB Management. 2006. 00.057.0.81.049. Malva vein clearing virus. In: ICTVdB – The Universal Virus Database, version 4. Büchen-Osmond, C. (ed), Columbia University, New York, USA.
  13. Kamer, G., and P. Argos. 1984. Primary structure comparison of RNA-dependent RNA polymerases from plant, animal and bacterial viruses. Nucleic Acids Research 12: 7269-7282. doi: 10.1093/nar/12.18.7269
  14. Laviña, A., J. Aramburu, and E.n Moriones. 2006. Occurrence of tomato spotted wilt and cucumber mosaic viruses in field-grown tomato crops and associated weeds in northeastern Spain. Plant Pathology, 45: 837-842. doi: 10.1111/j.1365-3059.1996.tb02893.x
  15. Martelli, G. P., M. Russo, and M. A. Castellano. 1969. Ultrastructural features of Malva parviflora L. with vein clearing and of plants infected with Beet mosaic virus. Phytopathologia Mediterranea 8: 175-186.
  16. Parrella, G., A. De Stradis and M. Giorgini. 2006. Sweet potato feathery mottle virus is the causal agent of sweet potato virus disease in Italy. Plant Pathology 55: 818. doi: 10.1111/j.1365-3059.2006.01476.x
  17. Parrella, G., H. Laterrot, K. Gebre-Selassie and G. Marchoux. 1998. Inheritance of resistance to Alfalfa mosaic virus in Lycopersicum hirsutum f. glabratum PI 134417. Journal of Plant Pathology 80: 241-243.
  18. Parrella, G., A. Moretti, P. Gognalons, M.-L. Lesage, G. Marchoux, K. Gebre-Selassie and C. Caranta. 2004. The Am gene controlling resistance to Alfalfa mosaic virus in tomato is located in the cluster of dominant resistance genes on chromosome 6. Phytopathology 94: 345-350. doi: 10.1094/PHYTO.2004.94.4.345
  19. Pisi, A., and M. G. Bellardi. 1988. Indagine fitopatologica su piante officinali ed aromatiche in Italia. Informatore fitopatologico 10: 57-62.
  20. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: molecular evolutionary genetics using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731–2739. doi: 10.1093/molbev/msr121
  21. Thompson, D. J., D. G. Higgins and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673-4680. doi: 10.1093/nar/22.22.4673
  22. White, P. S. and J. M. Kaper. 1989. A simple method for detection of viral satellite RNAs in small tissue samples. Journal of Virological Methods 23: 83-94. doi: 10.1016/0166-0934(89)90122-5
  23. Wylie, S. J., J. Kueh, B. Welsh, L. J. Smith, M. G. K. Jones and R. A. C. Jones. 2002. A non-aphid transmissible isolate of bean yellow mosaic potyvirus has an altered NAG motif in its coat protein. Archives of Virology 147: 1813-1820. doi: 10.1007/s00705-002-0846-y

Downloads

Download data is not yet available.