Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Improving strawberry ‘Flamenco’ performance with nano-chitosan, PGPR and Trichoderma harzianum bio-capsules

DOI
https://doi.org/10.14719/pst.11408
Submitted
22 August 2025
Published
14-10-2025

Abstract

A two-year study (2023-24 and 2024-25) assessed the effect of nano-chitosan, plant growth-promoting rhizobacteria (PGPR) and Trichoderma harzianum bio-capsule, individually and in combination on the growth, morphology and yield of strawberry (Fragaria × ananassa Duch.) cv. Flamenco in a subtropical environment. Among the treatments, T8 (nano-chitosan 100 ppm + Trichoderma harzianum (MTCC-5179) bio-capsule 200 ppm + PGPR Bio-capsule 200 ppm) was found to be significantly superior, achieving plant height (18.59 cm), leaves (20.68 plant-1), leaf area (87.74 cm²), runners (7.20 plant-1), crowns (2.78 plant-1), flowers (18.22 plant-1), fruit volume (19.16 cm³), diameter (43.81 mm), weight (18.55 g), length (56.95 mm), specific gravity (0.98 g cm-3), shelf-life (2.61 days) and yield (22.22 t ha-1) (p ≤ 0.05). The plants in this treatment exhibited a shorter time to bloom, with the first flowering observed on day 57.25 and fruit set (6.14 days after bloom) occurred soon after flowering. The PCA showed that the first principal component (PC1) explained 96.21 % of the variance integrating vegetative, reproductive and yield traits while the results of the Pearson correlation showed a strong positive association (r > 0.97) of the yield with morphological and fruit traits and a strong negative association (r < -0.96) with flowering delays. Concurrent application of nano-chitosan, PGPR and T. harzianum bio capsule has been established as an effective technology for strawberry vegetation, productivity, quality and postharvest performance under subtropical conditions.

References

  1. 1. Sawant SS, Lee B, Janghoon S, Seo HJ. Exploring small-fruit production in India: Present landscape and future opportunities. J Korean Soc Int Agric. 2023;35(2):104-11. https://doi.org/10.12719/KSIA.2023.35.2.104
  2. 2. Giampieri F, Tulipani S, Alvarez-Suarez JM, Quiles JL, Mezzetti B, Battino M. The strawberry: Composition, nutritional quality and impact on human health. Nutrition. 2012;28:9-19. https://doi.org/10.1016/j.nut.2011.08.009
  3. 3. Giampieri F, Alvarez-Suarez JM, Battino M. Strawberry and human health: Effects beyond anti-oxidant activity. J Agric Food Chem. 2014;62:3867-76. https://doi.org/10.1021/jf405455n
  4. 4. Aaby K, Remberg SF. Strawberry phenolics and impact of ripening. In: Preedy V, editor. Processing and impact on active components in food. London: Academic Press. 2015. p. 157-64. https://doi.org/10.1016/B978-0-12-404699-3.00019-6
  5. 5. Whitaker VM, Knapp SJ, Hardigan MA, Edger PP, Slovin JP, Bassil NV, et al. A roadmap for research in octoploid strawberry. Hortic Res. 2020;7:33. https://doi.org/10.1038/s41438-020-0252-1
  6. 6. Horneck DA, Sullivan DM, Owen JS, Hart JM. Soil test interpretation guide. Corvallis: Oregon State University Extension Service. 2011.
  7. 7. Ledesma NA, Nakata M, Sugiyama N. Effect of high temperature stress on the reproductive growth of strawberry cvs. ‘Nyoho’ and ‘Toyonoka’. Sci Hortic. 2008;116(2):186-93. https://doi.org/10.1016/j.scienta.2007.12.010
  8. 8. Georgieva D, Nikolova D, Vassileva E, Kostova B. Chitosan-based nanoparticles for targeted nasal galantamine delivery as a promising tool in Alzheimer’s disease therapy. Pharmaceutics. 2023;15(3):829. https://doi.org/10.3390/pharmaceutics15030829
  9. 9. Egamberdieva D, Lugtenberg B. Use of plant growth-promoting rhizobacteria to alleviate salinity stress in plants. In: Miransari M, editor. Use of microbes for the alleviation of soil stresses. Vol 1. New York: Springer. 2014. p. 73-96. https://doi.org/10.1007/978-1-4614-9466-9_4
  10. 10. Bianco L, Lopez L, Scalone AG, Di Carli M, Desiderio A, Benvenuto E, et al. Strawberry proteome characterization and its regulation during fruit ripening and in different genotypes. J Proteomics. 2009;72:586-607. https://doi.org/10.1016/j.jprot.2008.11.019
  11. 11. dos Santos OAL, dos Santos MS, Antunes Filho S, Backx BP. Nanotechnology for the control of plant pathogens and pests. Plant Adv. 2024;4:100080. https://doi.org/10.1016/j.plana.2024.100080
  12. 12. AOAC. Official methods of analysis of AOAC International. 21st ed. Washington, DC. AOAC. 2019.
  13. 13. Abdel-Mawgoud AMR, Tantawy TA, El-Nemr MA, Sassine YN. Growth and yield responses of strawberry plants to chitosan application. Eur J Sci Res. 2010;39(1):170-77.
  14. 14. Bhattacharyya PN, Jha DK. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J Microbiol Biotechnol. 2012;28(4):1327-49. https://doi.org/10.1007/s11274-011-0979-9
  15. 15. Altomare C, Norvell WA, Bjorkman T, Harman GE. Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl Environ Microbiol. 1999;65:2926-33. https://doi.org/10.1128/AEM.65.7.2926-2933.1999
  16. 16. Malerba M, Cerana R. Recent advances of chitosan applications in plants. Polymers. 2018;10(2):118. https://doi.org/10.3390/polym10020118
  17. 17. Pii Y, Graf H, Valentinuzzi F, Cesco S, Mimmo T. The effects of plant growth-promoting rhizobacteria (PGPR) on the growth and quality of strawberries. Acta Hortic. 2018;(1217):231-38. https://doi.org/10.17660/ActaHortic.2018.1217.29
  18. 18. Hermosa R, Viterbo A, Chet I, Monte E. Plant-beneficial effects of Trichoderma and of its genes. Microbiology. 2012;158:17-25. https://doi.org/10.1099/mic.0.052274-0
  19. 19. Abd Elrahman SH, El-Gabry YA, Hashem FA, Taha NM. Influence of nano-chitosan loaded with potassium-on-potassium fractionation in sandy soil and strawberry productivity. Agronomy. 2023;13(1126):1-15. https://doi.org/10.3390/agronomy13041126
  20. 20. Anuradha, Goyal RK, Sindhu SS, Godara AK. Effect of PGPR on strawberry cultivation under greenhouse conditions. Indian J Hortic. 2019;76(3):400-04. https://doi.org/10.5958/0974-0112.2019.00064.1
  21. 21. Lombardi N, Caira S, Troise AD, Scaloni A, Vitaglione P, Vinale F, et al. Trichoderma applications on strawberry plants modulate the physiological processes positively affecting fruit production and quality. Front Microbiol. 2020;11:1364. https://doi.org/10.3389/fmicb.2020.01364
  22. 22. Chauhan S, Kumar A, Mangla C, Aggarwal A. Response of strawberry plant (Fragaria ananassa Duch.) to inoculation with arbuscular mycorrhizal fungi and Trichoderma viride. J Appl Nat Sci. 2010;2(2):213-8. https://doi.org/10.31018/jans.v2i2.122
  23. 23. Bhat M, Jasrotia A, Bakshi P, Jamwal M, Sharma N, Sinha B, et al. Improvement in growth, yield and fruit quality of strawberry (Fragaria × ananassa Duch.) with plant growth promoting rhizobacteria. Appl Fruit Sci. 2025;67(1):1-9. https://doi.org/10.1007/s10341-024-01256-9
  24. 24. Nguyen Van S, Dinh Minh H, Nguyen Anh D. Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in greenhouse. Biocatal Agric Biotechnol. 2013;2(4):289-94. https://doi.org/10.1016/j.bcab.2013.06.001
  25. 25. Cabrera G, Gonzalez D, Silva C, Bernardo Y, Gidekel M, Osorio J, et al. Effect of chitosan on growth and development of highbush blueberry plants. Adv Chitin Sci. 2010;12:191-5.
  26. 26. Malusa E, Paszt L, Popinska W, Zurawicz E. The effect of a substrate containing arbuscular mycorrhizal fungi and rhizosphere microorganisms (Trichoderma, Bacillus, Pseudomonas and Streptomyces) and foliar fertilization on growth response and rhizosphere pH of three strawberry cultivars. Int J Fruit Sci. 2007;6(4):25-41. https://doi.org/10.1300/J492v06n04_04
  27. 27. Badar MA, Mehmood K, Hassan I, Ahmed M, Ahmad I, Ahmad N, et al. Plant growth promoting bacteria (PGPB) enhance growth and yield of strawberry cultivars. Appl Ecol Environ Res. 2022;20(3):2187-203. https://doi.org/10.15666/aeer/2003_21872203
  28. 28. Esitken A, Karlidag H, Ercisli S, Turan M, Sahin F. The effect of spraying a growth promoting bacterium on the yield, growth and nutrient element composition of leaves of apricot (Prunus armeniaca L. cv. Hacihaliloglu). Aust J Agric Res. 2003;54(4):377-80. https://doi.org/10.1071/AR02098
  29. 29. Rana H, Sharma K, Negi M. Effect of organic manure and biofertilizers on plant growth, yield and quality of sweet orange (Citrus sinensis L.). Int J Curr Microbiol Appl Sci. 2020;9(4):2064-70. http://doi.org/10.20546/ijcmas.2020.904.247
  30. 30. Singh A, Thakur A, Sharma S, Gill PPS, Kalia A. Bio-inoculants enhance growth, nutrient uptake and buddability of citrus plants under protected nursery conditions. Commun Soil Sci Plant Anal. 2018;49(20):2571-86. https://doi.org/10.1080/00103624.2018.1526946
  31. 31. Chiomento JLT, Fracaro J, Görgen M, Fante R, Dal Pizzol E, Welter M, et al. Arbuscular mycorrhizal fungi, Ascophyllum nodosum, Trichoderma harzianum and their combinations influence the phyllochron, phenology and fruit quality of strawberry plants. Agronomy. 2024;14(4):860. https://doi.org/10.3390/agronomy14040860
  32. 32. Mondal MM, Malek MA, Puteh AB, Ismail MR, Ashrafuzzaman M, Naher L. Effect of foliar application of chitosan on growth and yield in okra. Aust J Crop Sci. 2012;6(5):918.
  33. 33. Karlidag H, Yildirim E, Turan M, Pehluvan M, Donmez F. Plant growth-promoting rhizobacteria mitigate deleterious effects of salt stress on strawberry plants (Fragaria × ananassa). HortScience. 2013;48(5):563-67. https://doi.org/10.21273/HORTSCI.48.5.563
  34. 34. Esitken A, Yildiz HE, Ercisli S, Donmez MF, Turan M, Gunes A. Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Sci Hortic. 2010;124(1):62-66. https://doi.org/10.1016/j.scienta.2009.12.012
  35. 35. Tripathi VK, Kumar N, Shukla HS, Mishra AN. Influence of Azotobacter, Azospirillum and PSB on growth, yield and quality of strawberry cv. Chandler. In: Abstracts of the National Symposium on Conservation Horticulture. Dehradun, India. 2010. p. 198-9.
  36. 36. Mukta JA, Rahman M, As Sabir A, Gupta DR, Surovy MZ, Rahman M, et al. Chitosan and plant probiotics application enhance growth and yield of strawberry. Biocatal Agric Biotechnol. 2017;11:9-18. https://doi.org/10.1016/j.bcab.2017.05.005
  37. 37. El-Miniawy SM, Ragab ME, Youssef SM, Metwally AA. Response of strawberry plants to foliar spraying of chitosan. Res J Agric Biol Sci. 2013;9(6):366-72.
  38. 38. Tripathi VK, Gupta AK. Influence of Azotobacter and vermicompost on growth, flowering, yield and quality of strawberry (Fragaria × ananassa Duch.) cv. Chandler. Indian J Hortic. 2015;72(2):201-5. https://doi.org/10.5958/0974-0112.2015.00039.0
  39. 39. Chebotar VK, Chizhevskaya EP, Vorobyov NI, Bobkova VV, Pomyaksheva LV, Khomyakov YV, Konovalov SN. The quality and productivity of strawberry (Fragaria × ananassa Duch.) improved by the inoculation of PGPR Bacillus velezensis BS89 in field experiments. Agronomy. 2022;12(11):2600. https://doi.org/10.3390/agronomy12112600
  40. 40. Singh A, Tripathi VK. Influence of INM on vegetative growth, fruiting, yield and soil physical characters in papaya (Carica papaya L.). Int J Curr Microbiol Appl Sci. 2020;9(10):3811-22. https://doi.org/10.20546/ijcmas.2020.910.438
  41. 41. Singh UB, Malviya D, Khan W, Singh S, Karthikeyan N, Imran M, et al. Earthworm grazed-Trichoderma harzianum biofortified spent mushroom substrates modulate accumulation of natural antioxidants and bio-fortification of mineral nutrients in tomato. Front Plant Sci. 2018;9:1017. https://doi.org/10.3389/fpls.2018.01017
  42. 42. Tripathi VK, Kumar S, Kumar K, Kumar S, Dubey V. Influence of Azotobacter, Azospirillum and PSB on vegetative growth, flowering, yield and quality of strawberry cv. Chandler. Progressive Horticulture. 2016;48(1):49-53. https://doi.org/10.5958/2249-5258.2016.00009.9
  43. 43. El Ghaouth A, Arul J, Ponnampalam R, Boulet M. Chitosan coating effect on storability and quality of fresh strawberries. J Food Sci. 1991;56(6):1618-20. https://doi.org/10.1111/j.1365-2621.1991.tb08655.x
  44. 44. Vanilarasu K, Balakrishnamurthy G. Effect of organic manures and amendments on quality attributes and shelf life of banana cv. Grand Naine. Agrotechnology. 2014;3:1000119. https://doi.org/10.4172/2168-9881.1000119
  45. 45. Tripathi VK, Babu S. Effect of bio-fertilizers on growth, yield and quality of strawberry cv. Chandler. In: 3rd Indian Horticulture on “New R and D Initiatives in Horticulture for Accelerated Growth and Prosperity”. Bhubaneswar, Orissa: Horticultural Society of India. 2008. p. 5.
  46. 46. Zhang T, Jian Q, Yao X, Guan L, Li L, Liu F, et al. Plant growth-promoting rhizobacteria (PGPR) improve the growth and quality of several crops. Heliyon. 2024;10(10):e31553. https://doi.org/10.1016/j.heliyon.2024.e31553
  47. 47. Valle-Romero P, García-López JV, Redondo-Gómez S, Flores-Duarte NJ, Rodríguez-Llorente ID, Idaszkin YL, et al. Biofertilization with PGP bacteria improve strawberry plant performance under sub-optimum phosphorus fertilization. Agronomy. 2023;13(2):335. https://doi.org/10.3390/agronomy13020335

Downloads

Download data is not yet available.