Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 4 (2025)

Molecular evolution and adaptation of the effector protein from Candidatus Phytoplasma trifolii associated with brinjal little leaf disease

DOI
https://doi.org/10.14719/pst.11448
Submitted
25 August 2025
Published
06-11-2025 — Updated on 18-11-2025
Versions

Abstract

Brinjal little leaf (BLL) disease, caused by phytoplasmas, leads to significant yield losses, but its pathogenic mechanisms remain poorly understood. This study characterizes SAP54LP/S54LP (SAP54-like protein of BLL), an effector protein associated with the 16SrVI-D phytoplasma strain linked to BLL in Tamil Nadu, India. Molecular analyses, including nested PCR and virtual RFLP, confirmed the phytoplasma's classification within the 16SrVI group. The S54LP effector gene was amplified from infected brinjal, confirming its presence. Sequence comparisons showed that S54LP was 100 % identical to homologs in the 16SrVI-A group and 98 % identical to those in the 16SrIB group (phyl1 and S54LP), indicating group-specific divergence. Comparative analysis identified 13 single nucleotide polymorphisms (SNPs), 69 % of which led to nonsynonymous substitutions in the mature protein, potentially affecting host interactions. Haplotype network analysis revealed a globally distributed Hap_6 lineage and region-specific haplotypes, suggesting localized evolutionary dynamics. Evolutionary analysis indicated strong purifying selection on the coding sequence (Ka/Ks ≈ 0.3), reflecting the conservation of functional domains essential for pathogenicity. Conversely, positive selection was detected in the signal peptide region, implying adaptive evolution related to secretion and host targeting. Additionally, AT-rich codon usage at specific sites highlights multiple layers of evolutionary constraints shaping S54LP. Overall, these findings establish S54LP as a model for studying host-phytoplasma coevolution, providing insights into effector biology and informing strategies to manage phytoplasma diseases in crops.

References

  1. 1. Vaishnavi K, Devaraju V, Srinivasa V, Lakshmana D, Kantharaj Y, Singh TH, et al. Genetic variability studies in advanced breeding lines of brinjal (Solanum melongena L.) for fruit yield and quality parameters. Ecology, Environment and Conservation. 2023;29(2):66-71. https://doi.org/10.53550/eec.2023.v29i02s.011
  2. 2. Kaplan G, Boyaci HF, Ellialtioglu SS, Sonmez K, Kafkas NE, Beste. The eggplant (Solanum melongena L.) as a fruit vegetable and medicinal plant. In: Sonmez K, Kafkas NE, Beste, editors. Trends in Landscape, Agriculture, Forest and Natural Science. St. Kliment Ohridski University Press; 2019. p. 173.
  3. 3. Sękara A, Cebula S, Kunicki E. Cultivated eggplants - origin, breeding objectives and genetic resources: a review. Folia Hort. 2007;19:97-114.
  4. 4. Bidaramali V, Akhtar S, Kumari R, Das A, Ahmad MF, Roy C. Studies on variability and correlation for nutrients, biochemicals and yield contributing traits in brinjal (Solanum melongena L.). Int J Curr Microbiol Appl Sci. 2021;10(10):90-101.
  5. 5. Gupta R, Ram C, Chakravati SK, Deo C, Vishwakarma M, Gautam D, et al. Studies on correlation and path coefficient analyses in brinjal (Solanum melongena L.). Int J Curr Microbiol Appl Sci. 2017;6:4543-8. https://doi.org/10.20546/IJCMAS.2017.607.474
  6. 6. Gürbüz N, Uluişik S, Frary A, Frary A, Doğanlar S. Health benefits and bioactive compounds of eggplant. Food Chem. 2018;268:602-10. https://doi.org/10.1016/j.foodchem.2018.06.093
  7. 7. Jahanabadi S, Ahmad B, Nikoui V, Khan G, Khan MI. Antiinflammatory and analgesic properties of Solanum melongena.Phytopharmacological Communications. 2022;2:21-32. https://doi.org/10.55627/ppc.002.01.0049
  8. 8. Shubham, Kaushal S, Sharma U. Influence of boron and molybdenum fertilization on brinjal cv. Punjab Bharpoor growth, nutrient uptake and productivity in alluvial plains of Punjab. J Plant Nutr. 2025;48:1619-31. https://doi.org/10.1080/01904167.2025.2451925
  9. 9. Ngbolua KTN, Mbadiko CM, Matondo A, Bongo GN, Inkoto CL, Gbolo BZ, et al. Review on ethno-botany, virucidal activity, phytochemistry and toxicology of Solanum genus: potential bioresources for the therapeutic management of Covid-19. European Journal of Nutrition & Food Safety. 2020:35-48. https://doi.org/10.9734/ejnfs/2020/v12i730246
  10. 10. Fiza A, Chugh V, Mishra AC, Mishra V, Purwar S, Dwivedi SV, et al. Physiological and biochemical adaptations for salt stress tolerance in eggplant (Solanum melongena). Plant Physiology Reports. 2025;30:352-68. https://doi.org/10.1007/s40502-025-00863-2
  11. 11. Singh PL, Singh PK, Singh OP, Kumar DA. A study on trend analysis of area, production and productivity of brinjal in Uttar Pradesh. The Pharma Innov J. 2023;12:322-5.
  12. 12. Darabakula M, Mateeti ST, Pacini F, Bertaccini A, Contaldo N. Eggplant little leaf-associated phytoplasma detection in seedlings under insect-proof conditions. International Journal of Plant Biology. 2024;15:217-29. https://doi.org/10.3390/ijpb15020018
  13. 13. Haider MW, Sharma A, Majumdar A, Fayaz F, Bromand F, Rani U, et al. Unveiling the phloem: a battleground for plant pathogens. Phytopathology Research. 2024;6:65. https://doi.org/10.1186/s42483-024-00286-1
  14. 14. Mall S, Srivastava A. Morphological and biochemical stresses induced in plants due to phytoplasma association. In: Shahid M, Gaur R, editors. Molecular Dynamics of Plant Stress and its Management. Singapore: Springer Singapore; 2024. https://doi.org/10.1007/978-981-97-1699-9
  15. 15. Rao GP, Kumar M. World status of phytoplasma diseases associated with eggplant. Crop Protection. 2017;96:22-9. https://doi.org/10.1016/j.cropro.2017.01.005
  16. 16. Conigliaro G, Jamshidi E, Lo Verde G, Bella P, Mondello V, Giambra S, et al. Epidemiological investigations and molecular characterization of 'Candidatus Phytoplasma solani' in grapevines, weeds, vectors and putative vectors in Western Sicily (Southern Italy). Pathogens. 2020;9(11):918. https://doi.org/10.3390/pathogens9110918
  17. 17. Galetto L, Marzachì C, Marques R, Graziano C, Bosco D. Effects of temperature and CO2 on phytoplasma multiplication pattern in vector and plant. Bulletin of Insectology. 2011;64.
  18. 18. Kube M, Mitrovic J, Duduk B, Rabus R, Seemüller E. Current view on phytoplasma genomes and encoded metabolism. The Scientific World Journal. 2012;2012:185942.
  19. 19. Tokuda R, Iwabuchi N, Kitazawa Y, Nijo T, Suzuki M, Maejima K, et al. Potential mobile units drive the horizontal transfer of phytoplasma effector phyllogen genes. Front Genet. 2023;14:1132432. https://doi.org/10.3389/fgene.2023.1132432
  20. 20. Hoshi A, Oshima K, Kakizawa S, Ishii Y, Ozeki J, Hashimoto M, et al. A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proc Natl Acad Sci U S A. 2009;106:6416-21. https://doi.org/10.1073/pnas.0813038106
  21. 21. Anabestani A, Izadpanah K, Abbà S, Galetto L, Ghorbani A, Palmano S, et al. Identification of putative effector genes and their transcripts in three strains related to 'Candidatus Phytoplasma aurantifolia'. Microbiol Res. 2017;199:63-72. https://doi.org/10.1016/j.micres.2017.03.001
  22. 22. MacLean AM, Sugio A, Makarova OV, Findlay KC, Grieve VM, Tóth R, et al. Phytoplasma effector SAP54 induces indeterminate leaflike flower development in Arabidopsis plants. Plant Physiol. 2011;157(4):831-41. https://doi.org/10.1104/pp.111.181586
  23. 23. Minato N, Himeno M, Hoshi A, Maejima K, Komatsu K, Takebayashi Y, et al. The phytoplasmal virulence factor TENGU causes plant sterility by downregulating the jasmonic acid and auxin pathways. Sci Rep. 2014;4:7399. https://doi.org/10.1038/srep07399
  24. 24. Sugio A, MacLean AM, Hogenhout SA. The small phytoplasma virulence effector SAP11 contains distinct domains required for nuclear targeting and CIN-TCP binding and destabilization. New Phytol. 2014;202(2):606-22. https://doi.org/10.1111/nph.12721
  25. 25. Maejima K, Iwai R, Himeno M, Komatsu K, Kitazawa Y, Fujita N, et al. Recognition of floral homeotic MADS domain transcription factors by a phytoplasmal effector, phyllogen, induces phyllody. Plant J. 2014;78(4):541-54. https://doi.org/10.1111/tpj.12495
  26. 26. Singh A, Lakhanpaul S. Detection, characterization and evolutionary aspects of S54LP of SP (SAP54 Like Protein of Sesame Phyllody): a phytoplasma effector molecule associated with phyllody development in Sesamum indicum L. Physiol Mol Biol Plants. 2020;26(4):649-62. https://doi.org/10.1007/s12298-020-00764-8
  27. 27. Kitazawa Y, Iwabuchi N, Himeno M, Sasano M, Koinuma H, Nijo T, et al. Phytoplasma-conserved phyllogen proteins induce phyllody across the Plantae by degrading floral MADS domain proteins. J Exp Bot. 2017;68(10):2799-811. https://doi.org/10.1093/jxb/erx158
  28. 28. Fernández FD, Debat HJ, Conci LR. Molecular characterization of effector protein SAP54 in Bellis virescence phytoplasma (16SrIII-J). Trop Plant Pathol. 2019;44(3):265-71. https://doi.org/10.1007/s40858-019-00293-0
  29. 29. MacLean AM, Orlovskis Z, Kowitwanich K, Zdziarska AM, Angenent GC, Immink RGH, et al. Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner. PLoS Biol. 2014;12:e1001835. https://doi.org/10.1371/journal.pbio.1001835
  30. 30. Orlovskis Z, Hogenhout SA. A bacterial parasite effector mediates insect vector attraction in host plants independently of developmental changes. Front Plant Sci. 2016;7:885. https://doi.org/10.3389/fpls.2016.00885
  31. 31. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci U S A. 1984;81(24):8014-8. https://doi.org/10.1073/pnas.81.24.8014
  32. 32. Deng S, Hiruki C. Amplification of 16S rRNA genes from culturable and nonculturable Mollicutes. J Microbiol Methods. 1991;14(1):53-61. https://doi.org/10.1016/0167-7012(91)90007-D
  33. 33. Gundersen DE, Lee IM. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathologia Mediterranea. 1996;35(3):144-51.
  34. 34. Sambrook J, Russell DW. Detection of DNA in agarose gels. Cold Spring Harb Protoc. 2006;2006(1):pdb.prot4022. https://doi.org/10.1101/pdb.prot4022
  35. 35. Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022-7. https://doi.org/10.1093/molbev/msab120
  36. 36. Almagro AJJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37(4):420-3. https://doi.org/10.1038/s41587-019-0036-z
  37. 37. Leigh JW, Bryant D. POPART: full-feature software for haplotype network construction. Methods Ecol Evol. 2015;6(9):1110-6. https://doi.org/10.1111/2041-210X.12410
  38. 38. Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34(12):3299-302. https://doi.org/10.1093/molbev/msx248
  39. 39. Delport W, Poon AFY, Frost SDW, Kosakovsky Pond SL. Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics. 2010;26(19):2455-7. https://doi.org/10.1093/bioinformatics/btq429
  40. 40. Zhao Y, Wei W, Lee IM, Shao J, Suo X, Davis RE. Construction of an interactive online phytoplasma classification tool, iPhyClassifier and its application in analysis of the peach X-disease phytoplasma group (16SrIII). Int J Syst Evol Microbiol. 2009;59(11):2582-93. https://doi.org/10.1099/ijs.0.010249-0
  41. 41. Orlovskis Z, Singh A, Kliot A, Huang W, Hogenhout SA. The phytoplasma SAP54 effector acts as a molecular matchmaker for leafhopper vectors by targeting plant MADS-box factor SVP. Elife. 2025;13:e98992.
  42. 42. Karan R, Prasannakumar MK, Harish J, Patil SS, Pallavi KN, Venkateshbabu G, et al. Genomics and transcriptomics of Candidatus Phytoplasma asteris induced sesame phyllody modulating hormonal and defense alterations. J Basic Microbiol. 2025;65(1):e70080. https://doi.org/10.1002/jobm.70080
  43. 43. Pilet F, Quaicoe RN, Osagie IJ, Freire M, Foissac X. Multilocus sequence analysis reveals three distinct populations of "Candidatus Phytoplasma palmicola" with a specific geographical distribution on the African continent. Appl Environ Microbiol. 2019;85(7):e02716-18. https://doi.org/10.1128/AEM.02716-18
  44. 44. Misra V, Pandey H, Srivastava S, Sharma A, Kumar R, Pandey AK, et al. Computational analysis of haplotype diversity, phylogenetic variation and population structure of Candidatus Phytoplasma aurantifolia using tuf gene sequences. Ecol Genet Genom. 2024;31:100229. https://doi.org/10.1016/j.egg.2024.100229
  45. 45. Liao Y, Lin S, Lin S, Sun W, Shen B, Cheng H, et al. Structural insights into the interaction between phytoplasmal effector causing phyllody 1 and MADS transcription factors. Plant J. 2019;100:706-19. https://doi.org/10.1111/tpj.14463
  46. 46. Rümpler F, Gramzow L, Theißen G, Melzer R. Did convergent protein evolution enable phytoplasmas to generate "zombie plants"? Trends Plant Sci. 2015;20(12):798-806. https://doi.org/10.1016/j.tplants.2015.08.004
  47. 47. Li L, Guo N, Cao Y, Zhai X, Fan G. Genome-wide characterization of calmodulin and calmodulin-like protein gene families in Paulownia fortunei and identification of their potential involvement in Paulownia witches' broom. Genes (Basel). 2023;14(8):1540. https://doi.org/10.3390/genes14081540

Downloads

Download data is not yet available.