Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Harnessing hybrid vigor: Heterosis and combining ability analysis for enhanced yield in American cotton (Gossypium hirsutum L.)

DOI
https://doi.org/10.14719/pst.11470
Submitted
26 August 2025
Published
22-12-2025

Abstract

Harnessing heterosis is an effective strategy to improve cotton yield and fiber quality. The present investigation was undertaken to evaluate the magnitude of heterosis and combining ability for yield and fiber-related traits in cotton. A line × tester mating design involving six lines and two testers generated twelve F1 hybrids, along with their parents and two commercial checks, were evaluated in a randomised block design with two replications at the Regional Agricultural Research Station (RARS), Warangal, Telangana, during Kharif 2024-2025. Data on yield and fiber quality parameters were analyzed using analysis of variance and heterosis and their effects were estimated. WGCV-372 emerged as the best general combiner (general combining ability (GCA) effect) for net plot yield/kg and boll weight. WGCV Bt-60 exhibited positive GCA for boll weight, lint index, seed index and yield, indicating multi-trait superiority. The hybrids WGCV Bt-60 × PKV 081 Bt, WGCV Bt-60 × WGCV Bt-108 and WGCV-252 x PKV 081 Bt show strong heterosis improvement in yield, plant height, boll weight and fiber quality. The cross WGCV-252 × PKV 081 Bt showing strongest heterosis for boll weight with 39.1 % over mid-parent, 29.9 % over better parent and a 12.2 % increase over RCH 929 (check), indicating its potential to improve fiber yield components. WGCV Bt-60 × WGCV Bt-108 showed significant positive specific combining ability (SCA) for plant height, number of bolls per plant and net plot yield/kg. WGCV-413 × PKV 081 Bt exhibited positive SCA for plant height, monopodia, sympodia and number of bolls per plant. WGCV-252 × WGCV Bt-108 showed a significant positive SCA for lint index and ginning outturn (GOT %).

References

  1. 1. Yang Z, Qanmber G, Wang Z, Yang Z, Li F. Gossypium genomics: trends, scope and utilization for cotton improvement. Trends Plant Sci. 2020;25(5):488-500. https://doi.org/10.1016/j.tplants.2019.12.011
  2. 2. PJTAU, Agricultural Market Intelligence Centre. 2025. Available at https://www.pjtau.edu.in/agri-marketing-intelligence.html
  3. 3. Anwar M, Iqbal MZ, Abro AA, Memon S, Bhutto LA, Memon SA, Peng Y. Inter-specific hybridization in cotton (Gossypium hirsutum L.) for crop improvement. Agronomy. 2022;12(12):3158. https://doi.org/10.3390/agronomy12123158
  4. 4. Morojele M, Labuschagne M. Heterotic performance of quality characteristics of bread wheat cultivars. Afr Crop Sci J. 2013;21(4):283-9.
  5. 5. Birchler JA, Yao H, Chudalayandi S, Vaiman D, Veitia RA. Heterosis. Plant Cell. 2010; 22:2105-12. https://doi.org/10.1105/tpc.110.076133
  6. 6. Inamullah HA, Muhammad F, Sirajuddin, Hassan G, Gul R. Diallel analysis of the inheritance pattern of agronomic traits of bread wheat. Pak J Bot. 2006;38(4):1169-75.
  7. 7. Hochholdinger F, Hoecker N. Towards the molecular basis of heterosis. Trends Plant Sci. 2007;2(9):427-32. https://doi.org/10.1016/j.tplants.2007.08.005
  8. 8. Zhang Y, Chen J, Gao Z, Wang H, Liang D, Guo Q, et al. Identification of heterosis and combining ability in the hybrids of male sterile and restorer sorghum [Sorghum bicolor (L.) Moench] lines. PLoS One. 2024;19(1):e0296416. https://doi.org/10.1371/journal.pone.0296416
  9. 9. Edukondalu B, Reddy VR, Rani TS, Kumari A, Soundharya B. Study of genetic variability for yield and yield attributes and bran oil content in maintainer lines of rice (Oryza sativa L.). Int J Bio-Res Stress Manage. 2023;14(7):978-85. https://doi.org/10.23910/1.2023.3418
  10. 10. Edukondalu B, Reddy VR, Rani TS, Kumari CA, Soundharya B. Assessment of variation in rice maintainer lines using principal component analysis. Electron J Plant Breed. 2024;15(1):270-6. https://doi.org/10.37992/2024.1501.024
  11. 11. Edukondalu B, Reddy VR, Rani TS, Kumari CA, Soundharya B. Correlation and path analysis for yield and yield attributes in maintainer lines of rice (Oryza sativa L.). Int J Bio-Res Stress Manage. 2023;14(6):900-8. https://doi.org/10.23910/1.2023.3417
  12. 12. Edukondalu B, Reddy VR, Rani TS, Kumari CA, Soundharya B. Genetic diversity analysis in rice maintainer lines using K-means clustering for yield and yield attributes. Int J Bio-Res Stress Manage. 2024;15(6):1-7. https://doi.org/10.23910/1.2024.5312a
  13. 13. Vadodariya JM, Patel BC, Patel MP, Kumar D, Pat SK. Studies on combining ability and gene action for seed cotton yield and its component traits in interspecific hybrids of cotton. Pharma Innov J. 2022;11:1090-7.
  14. 14. Zhang X, Lv L, Lv C, Guo B, Xu R. Combining ability of different agronomic traits and yield components in hybrid barley. PLoS One. 2015;10(6):e0126828. https://doi.org/10.1371/journal.pone.0126828
  15. 15. El-Feky HDH. Motes percentage and ginning outturn as affected with cotton cultivar and location. Agric Sci. 2010;1(1):44-50. https://doi.org/10.4236/as.2010.11006
  16. 16. Gomez KA, Gomez AA. Statistical procedures for agricultural research. New York: John Wiley & Sons; 1984.
  17. 17. Fehr WR. Principles of cultivar development. Vol. 1. Theory and technique. New York: Macmillan Publishing Company; 1987.
  18. 18. Kempthorne O. An introduction to genetic statistics. New York: John Wiley & Sons; 1957.
  19. 19. Singh RK, Chaudhary BD. Biometrical methods in quantitative genetic analysis. Ludhiana (India): Kalyani Publishers; 1977.
  20. 20. Wu M, Pei W, Wedegaertner T, Zhang J, Yu J. Genetics, breeding and genetic engineering to improve cottonseed oil and protein: a review. Front Plant Sci. 2022;13:864850. https://doi.org/10.3389/fpls.2022.864850
  21. 21. Begna T. Combining ability and heterosis in plant improvement. Open J Plant Sci. 2021;6(1):108–17. https://doi.org/10.17352/ojps.000043
  22. 22. Zerihun Desalegn ZD, Ratanadilok N, Kaveeta R, Pongtongkam P, Kuantham A. Heterosis and combining ability for yield and yield components of cotton (Gossypium hirsutum L.). Agric Nat Resour. 2004;38(1):11-20.
  23. 23. Hassan A, Ashraf J, Wahid S, Alyas K, Nisar S, Kanwal S, et al. Estimation of heterosis and combining ability for yield and fiber related traits in (Gossypium hirsutum L.). Sarhad J Agric. 2024;40:325-34. https://doi.org/10.17582/journal.sja/2024/40.2.325.334
  24. 24. Solongi N, Jatoi WA, Baloch MJ, Siyal M, Memon S. Heterosis and combining ability estimates for assessing potential parents to develop F₁ hybrids in upland cotton. J Anim Plant Sci. 2019;29(5):1362-73.
  25. 25. Madhu B, Sivakumar S, Manickam S, Murugan M, Rajeswari S, Boopathi NM. Improvising cotton (Gossypium hirsutum L.) genotypes for compact plant architecture traits suitable for mechanical harvesting. Indian J Genet Plant Breed. 2023;83(3):398-406. https://doi.org/10.31742/ISGPB.83.3.12
  26. 26. Raghavendra VC, Nidagundi JM, Kuchanur PH, Kulkarni VV, Hanchinal SG, Suma TC, et al. Genetic evaluation of compact cotton lines and varieties for Bt combining ability studies using line × tester design in cotton (Gossypium hirsutum L.). Proc Int Conf Clim Change Nat Res Manag. 2024.
  27. 27. Khokhar ES, Shakeel A, Maqbool MA, Abuzar MK, Zareen S, Aamir SS, et al. Studying combining ability and heterosis in different cotton (Gossypium hirsutum L.) genotypes for yield and yield contributing traits. Pak J Agric Res. 2018;31(1):55-68. https://doi.org/10.17582/journal.pjar/2018/31.1.55.68
  28. 28. Prakash G, Korekar SL, Mankare S. Combining ability analysis in Bt cotton (G. hirsutum L.) to harness high yield under contrasting planting densities through heterosis breeding. Int J Curr Microbiol Appl Sci. 2018;7:1765-74. https://doi.org/10.20546/ijcmas.2018.702.214
  29. 29. Hibbiny YA, Ramadan BM, Max MS. Heterosis and combining ability for yield and fiber quality in cotton (Gossypium barbadense L.) using half diallel mating system. Menoufia J Plant Prod. 2020;5(5):233-48. https://doi.org/10.21608/mjppf.2020.171460
  30. 30. Kannan N, Saravanan K. Heterosis and combining ability analysis in tetraploid cotton (G. hirsutum L. and G. barbadense L.). Electron J Plant Breed. 2016;7:520-8. https://doi.org/10.5958/0975-928X.2016.00067.3
  31. 31. Chakholoma M, Nımbal S, Jaın AJ, Kumar M. Combining ability analysis for yield and fibre quality traits in American cotton (Gossypium hirsutum L.) genotypes. Ekin J Crop Breed Genet. 2022;8(1):61-9.
  32. 32. Rasheed Z, Anwar M, Hanif K, Adrees A, Karim W, Amjad K, et al. Evaluating combining abilities and heterotic effects for enhanced cotton yield. Biol Clin Sci Res J. 2023;4(1). https://doi.org/10.54112/bcsrj.v2023i1.384
  33. 33. Anjum R, Baloch MJ, Baloch GM, Chachar Q. Combining ability estimates for yield and fibre quality traits in Bt and non-Bt upland cotton genotypes. Pure Appl Biol. 2018;7(1):389-9. http://dx.doi.org/10.19045/bspab.2018.70048
  34. 34. Meera M, Subramanian A, Premalatha N, Boopathi NM, Vijayalakshmi D, Iyanar K, et al. Impact of environments on combining ability and heterosis in cotton (Gossypium hirsutum L.). Nucleus. 2025:1-11. https://doi.org/10.1007/s13237-025-00537-2
  35. 35. Zhang J, Wu M, Yu J, Li X, Pei W. Breeding potential of introgression lines developed from interspecific crossing between upland cotton (Gossypium hirsutum) and Gossypium barbadense: heterosis, combining ability and genetic effects. PLoS One. 2016;11(1):e0143646. https://doi.org/10.1371/journal.pone.0143646

Downloads

Download data is not yet available.