Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

Precision nitrogen management enhances maize productivity, efficiency and soil health in the trans-gangetic plains

DOI
https://doi.org/10.14719/pst.11541
Submitted
30 August 2025
Published
08-11-2025

Abstract

This study evaluates real-time nitrogen (N) management using the leaf color chart (LCC) and chlorophyll content meter (CCM) on maize (Zea mays L.) yield, nitrogen use efficiency and soil health in Punjab’s Trans-Gangetic Plains. A split-plot field experiment with three maize varieties (PMH-14, PMH-13, ADV-9293) and six N-management strategies-including LCC and CCM threshold-based applications, nano-nitrogen blends and recommended dose fertilizer regimes-was conducted with three replications during the 2024 Kharif season. Key findings reveal that synchronizing N supply with crop demand via CCM-50 and LCC-5 significantly enhances soil nitrogen content, soil enzymatic activities (urease, dehydrogenase and alkaline phosphatase enzymes) and organic carbon. The PMH-14 variety paired with CCM-50 delivered the highest yields (up to 9.26 t/ha), cob girth, test weight, grains per cob and plant growth parameters. Precision N management enhanced resource use efficiency and reduced fertilizer inputs by 25-50 % compared with conventional practices and increased farmer profitability. Soil properties, including pH, electrical conductivity and macronutrients, remained stable, while real-time N regimes promoted greater crops and soil resilience. Economic analysis indicated superior net returns for sensor-based interventions. The results support integrating sensor-guided N management with responsive genotypes for sustainable, climate-smart maize intensification. Multi-location validation is recommended to further refine these approaches.

References

  1. 1. Chen Y, Liu L. Improving eco-efficiency in coal mining area for sustainability development: An emergy and super-efficiency SBM-DEA with undesirable output. J Clean Prod. 2022;339:130701. https://doi.org/10.1016/j.jclepro.2022.130701
  2. 2. Gajera K, Chhodavadia S, Khunt A, Solanki N. Effect of nano dap on growth, yield and quality of rabi maize (Zea mays L.). Int J Res Agron. 2025;8(8):607-10. https://doi.org/10.33545/2618060X.2025.v8.i8i.3609
  3. 3. Jatav SS. Decomposition analysis of maize production in India. Open Access J Agric Res. 2023;8(3):1-7. https://doi.org/10.23880/oajar-16000321
  4. 4. Singh U, Singh V, Singh SS, Dey P, Singh YV, Singh P, et al. Real time nitrogen and irrigation management for enhanced productivity and nutrient use efficiency of maize under conservation agriculture. Ann Agric Res. 2021;42(4):420-26.
  5. 5. Kumar S, Singh R, Meena LR. Effect of nitrogen scheduling through LCC on growth and yield of maize (Zea mays L.). Pharma Innov J. 2021;10(2):641-43.
  6. 6. Mathukia R, Rathod P, Dadhania N. Climate change adaptation: Real time nitrogen management in maize (Zea mays L.) using leaf colour chart. Curr World Environ. 2014;9(3):1028-33. https://doi.org/10.12944/CWE.9.3.58
  7. 7. Patel S, Thakur D, Nagwanshi A, Upadhyay P. Nutrient uptake, yield and economics of maize (Zea mays L.) as influenced by planting methods and integrated nitrogen management. J Pharmacogn Phytochem. 2018;7(4):1122-25.
  8. 8. Yang Z, Lu Y, Ding Y, Lu D, Li Y, Liu Z, et al. Optimizing agronomic, environmental, health and economic performances in summer maize production through fertilizer nitrogen management strategies. Plants. 2023;12(7):1490. https://doi.org/10.3390/plants12071490
  9. 9. Ganie BA, Bali AS, Ahangar FA, Bhat MA, Jehangir A, Iqbal S, et al. Effect of precision nitrogen management through LCC on nutrient content and uptake of maize (Zea mays L.) under temperate conditions of Kashmir. Int J Plant Soil Sci. 2019;28(5):1-7.
  10. 10. Fang Q, Yu Q, Wang E, Chen Y, Zhang G, Wang J, et al. Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat-maize double cropping system in the North China Plain. Plant Soil. 2006;284(1-2):335-50. https://doi.org/10.1007/s11104-006-0055-7
  11. 11. Kalappanavar D, Gali S. Effect of organics and inorganics on soil enzyme activity. Karnataka J Agric Sci. 2010;21(1):153-54.
  12. 12. Bangar P, Singh A, Dotasara S, Pratap T, Meena N, Meena S. Precision nutrient management through LCC in Kharif maize (Zea mays L.). Agric Sci Digest. 2023;43(3):360-63
  13. 13. Jackson ML. Soil chemical analysis. Englewood Cliffs (NJ): Prentice-Hall; 1973.
  14. 14. Miller RO, Curtin D. Electrical conductivity and soluble ions. In: Carter MR, Gregorich EG, editors. Soil sampling and methods of analysis. 2nd ed. Boca Raton (FL): CRC Press; 2008. p. 105-17.
  15. 15. Walkley A, Black IA. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934;37(1):29-38. https://doi.org/10.1097/00010694-193401000-00003
  16. 16. Subbiah BV, Asija GL. A rapid procedure for the estimation of available nitrogen in soils. Curr Sci. 1956;25(8):259-60.
  17. 17. Olsen SR, Cole CV, Watanabe FS, Dean LA. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Washington (DC): United States Department of Agriculture; 1954. Circular No. 939.
  18. 18. Pavan A, Sagar L, Reddy D. Real time nitrogen management of maize using CCM 200 plus during dry season in eastern coastal plains of India. Agric Sci Digest. 2024. https://doi.org/10.18805/ag.D-5992
  19. 19. Shankar T, Singh RK, Kumar A, Meena R. Growth, yield and economics of summer maize (Zea mays) as influenced by nitrogen management options. Biol Forum Int J. 2022;14(2):1047-51. https://doi.org/10.30954/0974-1712.02.2021.14
  20. 20. Samadhiya N, Singh S, Goyal G, Sadawarti MJ, Sharma S, Tripathi L. Evaluation of organic and inorganic sources of nutrients in maize (Zea mays L.): Potato (Solanum tuberosum L.) cropping system. Pharma Innov J. 2021;10(7):1360-65.
  21. 21. Guo J, Fan J, Xiang Y, Zhang F, Zhang X, Yan S, et al. Synchronizing nitrogen supply and uptake by rainfed maize using mixed urea and slow-release nitrogen fertilizer. Nutr Cycle Agroecosyst. 2022;122(2):157-71. https://doi.org/10.1007/s10705-022-10196-3
  22. 22. Sarkar S, Upadhyay PK, Dey A, Ekka U, Rathore SS, Shekhawat K, et al. Integrating soil and crop metrics with precision agriculture: Pusa N Doctor app for sustainable nitrogen management in maize. PLoS One. 2025;20(4):e0318678. https://doi.org/10.1371/journal.pone.0318678
  23. 23. Makwana SN, Patel RA, Chavda MH, Patel PK, Rahevar HD. Effect of nitrogen management on chemical and biological properties of soil on Kharif pearl millet. Pharma Innov J. 2023;12(7):2293-96.
  24. 24. Shi S, Richardson AE, O'Callaghan M, DeAngelis KM, Jones EE, Stewart A, et al. Effects of selected root exudate components on soil bacterial communities. FEMS Microbiol Ecol. 2011;77(3):600-10. https://doi.org/10.1111/j.1574-6941.2011.01150.x
  25. 25. Chen S, Yang L, Liu X, Zhu Z. Net primary productivity variations associated with climate change and human activities in Nanjing metropolitan area of China. Int J Environ Res Public Health. 2022;19(22):14798. https://doi.org/10.3390/ijerph192214798
  26. 26. Hailegnaw NS, Mercl F, Pračke K, Száková J, Tlustoš P. Mutual relationships of biochar and soil pH, CEC and exchangeable base cations in a model laboratory experiment. J Soils Sediments. 2019;19(5):2405-16. https://doi.org/10.1007/s11368-019-02264-z
  27. 27. Lori M, Symnaczik S, Mäder P, De Deyn G, Gattinger A. Organic farming enhances soil microbial abundance and activity-A meta-analysis and meta-regression. PLoS One. 2017;12(7):e0180442. https://doi.org/10.1371/journal.pone.0180442
  28. 28. Brtnicky M, Dokulilova T, Holatko J, Pecina V, Kintl A, Latal O, et al. Long-term effects of biochar-based organic amendments on soil microbial parameters. Agronomy. 2019;9(11):747. https://doi.org/10.3390/agronomy9110747
  29. 29. Adetunji AT, Lewu FB, Mulidzi R, Ncube B. The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: a review. J Soil Sci Plant Nutr. 2017;17(3):794-807. https://doi.org/10.4067/S0718-95162017000300018
  30. 30. Sarma HH, Borah SK, Chintey R, Nath H, Talukdar N. Site specific nutrient management (SSNM): Principles, key features and its potential role in soil, crop ecosystem and climate resilience farming. J Adv Biol Biotechnol. 2024;27(8):211-22. https://doi.org/10.9734/jabb/2024/v27i81133
  31. 31. Tian J, Dunfield K, Condron L. Biological cycling of nitrogen and phosphorus in soils. Plant Soil. 2024;498(1-2):1-4. https://doi.org/10.1007/s11104-024-06601-1
  32. 32. Khan N, Ahmed ZI, Ahmed M, Jilani G, Ahmad S. Soil health and crop yield assessment for different cropping systems and nutrient management to determine sustainable management practices in a semi-arid region. J Soil Sci Plant Nutr. 2025. https://doi.org/10.1007/s42729-025-02604-8
  33. 33. Shankar T, Singh RK, Kumar A. Impact of precision nitrogen management on growth and productivity of rabi maize. Int J Environ Clim Change. 2022;12(11):2730-8.
  34. 34. Moeinnamini A, Weisany W, Hadi M, Torkashvand AM, Mohammadinejad A. Enhancing photosynthesis pigment, protein content, nutrient uptake and yield in maize (Zea mays L.) cultivars using vermicompost, livestock manure and Azotobacter chroococcum. J Soil Sci Plant Nutr. 2024;24(4):6999-7009. https://doi.org/10.1007/s42729-024-02019-x
  35. 35. Xu W, Liu S, Feng J, Wang B, Shao Z, Wang Y, et al. Rice canopy light resources allocation, leaf net photosynthetic rate and yield formation characteristics response to combined application of nitrogen and potassium. J Soil Sci Plant Nutr. 2023;23(4):5257-69. https://doi.org/10.1007/s42729-023-01399-w
  36. 36. Begam A, Adhikary S, Roy DC, Ray M. Grain yield of Kharif maize hybrid (Zea mays L.) as influenced by doses and split application of nitrogen. Int J Curr Microbiol Appl Sci. 2018;7(7):2121-29. https://doi.org/10.20546/ijcmas.2018.707.249
  37. 37. Atakora K, Dapaah HK, Agyarko K, Essilfie ME, Santo KG. Additive main effect and multiplicative interaction stability analysis of grain yield performance in cowpea genotypes across locations.Am J Plant Sci. 2023;14(4):517-31. https://doi.org/10.4236/ajps.2023.144035
  38. 38. Ahirwar H, Kulhare P, Mahajan G, Prajapati SS, Singh V. Effect of different organic and inorganic fertilizers on growth and yield parameters of maize (Zea mays L.). J Sci Res Rep. 2025;31(1):362-71. https://doi.org/10.9734/jsrr/2025/v31i12777
  39. 39. Cooper M, Voss-Fels KP, Messina CD, Tang T, Hammer GL. Tackling G × E × M interactions to close on-farm yield-gaps: creating novel pathways for crop improvement by predicting contributions of genetics and management to crop productivity. Theor Appl Genet. 2021;134(6):1625-44. https://doi.org/10.1007/s00122-021-03812-3
  40. 40. Sigaye MH, Nigussei A, Yacob A. Effects of NPSB blended and urea fertilizer rates on yield and yield components of maize and economic productivity under andisols and chernozems soil types. Int J Res Stud Agric Sci. 2022;8(3):10-17.
  41. 41. Ali AM, Salem HM, Bijay-Singh. Site-specific nitrogen fertilizer management using canopy reflectance sensors, chlorophyll meters and leaf color charts: A review. Nitrogen. 2024;5(4):828-56. https://doi.org/10.3390/nitrogen5040054
  42. 42. Fayaz S, Kanth RH, Bhat TA, Valipour M, Iqbal R, Munir A, et al. Leaf color chart (LCC)-based precision nitrogen management for assessing phenology, agrometeorological indices and sustainable yield of hybrid maize genotypes under temperate climate. Agronomy. 2022;12(12):2981. https://doi.org/10.3390/agronomy12122981
  43. 43. Dahiya S. Impact of seasonal climatic variability on production and productivity of crops. J Pharmacogn Phytochem. 2018;7(4):450-52.
  44. 44. Barman S, Bhattacharyya R, Singh C, Rathore AC, Singhal V, Biswas DR, et al. Long-term agroforestry enhances soil organic carbon pools and deep soil carbon sequestration in the Indian Himalayas. Front Environ Sci. 2025;13. https://doi.org/10.3389/fenvs.2025.1568564
  45. 45. Lammerts van Bueren ET, Struik PC. Diverse concepts of breeding for nitrogen use efficiency. A review. Agron Sustain Dev. 2017;37(5):45. https://doi.org/10.1007/s13593-017-0457-3

Downloads

Download data is not yet available.