Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Phytochemistry and in vitro growth inhibitory action of Corchorus olitorius leaves against Leishmania tropica

DOI
https://doi.org/10.14719/pst.11542
Submitted
30 August 2025
Published
03-12-2025

Abstract

Corchorus olitorius L. (Malvaceae) is a nutritional, edible vegetable, as its leaves have a high mineral content, including calcium and iron, as well as vitamins such as thiamine (B1), riboflavin (B2), folic acid, ascorbic acid (C) and tocopherol (E). Also, it is rich with essential phytochemicals such as cardiac glycosides, flavonoids, phenolics, fatty acids and terpenes, which are known for their pharmacological importance, like antioxidant, anti-inflammatory, antibacterial activities, antiviral, analgesic, antidiabetic and antitumor. This study aimed to evaluate the antileishmanial activity of C. olitorius hexane extract towards cutaneous leishmaniasis prepared by the extraction of 20 g of dried powdered leaves, followed by preliminary phytochemical analysis by GC-MS and TLC. Six different concentrations were assessed (1000, 500, 250, 125, 62.5 and 31.25 µg/mL) and compared with Pentostam®, a commonly prescribed antileishmanial medication. The GC-MS chromatogram demonstrated that the hexane extract is rich in terpenes (Phytol) and fatty acids (linolenic and palmitic acid) and TLC confirms the presence of β-sitosterol as having an RF value similar to the standard. IBM software's one-way analysis of variance (ANOVA) test was used to calculate the rate of inhibition for the 6 concentrations. The inhibition rate was more significant in the first 3 concentrations, 1000, 500 and 250 μg/mL, giving 78.96 %, 76.99 % and 68.88 % inhibition rate respectively, proving the anti-antileishmanial effect, as compared to positive control′s inhibition value, which was 67.23 % and the hexane fraction used to treat L. tropica was effective at low concentration of 0.127 mg/mL. The hexane extract contains a good percentage of linolenic, palmitic acid and phytol. TLC and GC-MS confirm the presence of β-sitosterol and the antileishmanial qualities are similar to Pentostam® treatment.   

References

  1. 1. Steverding D. The history of leishmaniasis. Parasit Vectors. 2017; 10(82):1-0. https://doi.org/10.1186/s13071-017-2028-5
  2. 2. Shah S M, Abdul Jalil T Z. Investigation of the activity of Iraqi agave attenuata on in vitro growth of cutaneous Leishmania Promastigotes. J Res Med Dent Sci. 2023; 11 (01): 114-120.
  3. 3. Mohammed AS, Tian W, Zhang Y, Peng P, Wang F, Li T. Leishmania lipophosphoglycan components: a potent target for synthetic neoglycoproteins as a vaccine candidate for leishmaniasis. Carbohydr Polym. 2020;237:1-8. https://doi.org/10.1016/j.carbpol.2020.116120
  4. 4. Nigatu H, Belay A, Ayalew H, Abebe B, Tadesse A, Tewabe Y, Degu A. In vitro antileishmanial activity of some Ethiopian medicinal plants. J Exp Pharmacol. 2021; 13:15-22. https://doi.org/10.2147/JEP.S285079
  5. 5. Heidari-Kharaji M, Taheri T, Doroud D, Habibzadeh S, Rafati S. Solid lipid nanoparticle loaded with paromomycin: in vivo efficacy against Leishmania tropica infection in BALB/c mice model. Appl Microbiol Biotechnol. 2016;100(16):7051–60. https://doi.org/10.1007/s00253-016-7422-y
  6. 6. Al-Obaidi MJ, Abd Al-Hussein MY, Al-Saqur IM. Survey study on the prevalence of cutaneous leishmaniasis in Iraq. Iraqi Journal of Science. 2016;57(3C):2181-7.
  7. 7. Beyene, B. Review on Application and management of medicinal plants for the livelihood of the local community. J. Resour. Dev. Manag. 2016; 22: 33–39.
  8. 8. Pholoma SB, Haki G, Malambane G, Tshwenyane S, Adjetey J. Corchorus olitorius: A promising medicinal plant in southern Africa and effects of growing conditions on its bioactive compounds-A Review. J Biosci Med. 2024;12:255-74. https://doi.org/10.4236/jbm.2024.126022
  9. 9. Loumerem, M.; Alercia, A. Descriptors for jute (Corchorus olitorius L.). Genet Resour Crop Evol. 2016;63:1103–1111. https://doi.org/10.1007/s10722-016-0415-y
  10. 10. Kumari, N.; Choudhary, S.B.; Sharma, H.K.; Singh, B.K.; Kumar, A.A. Health-promoting properties of Corchorus leaves: A review. 11-J Herb Med. 2019;15:100240. https://doi.org/10.1016/j.hermed.2018.10.005
  11. 11. Hasan HT, Kadhim EJ. Phytochemical investigation of Corchorus olitorius L. leaves cultivated in Iraq and it’s in vitro antiviral activity. Iraqi Journal of Pharmaceutical Sciences. 2018;27(2):115-22. https://doi.org/10.31351/vol27iss2pp115-122
  12. 12. Tamokou JD, Mbaveng AT, Kuete V. In Medicinal spices and vegetables from Africa. Academic press; 2017 Jan 1. Chapter 8, Antimicrobial activities of African medicinal spices and vegetables; (pp. 207-237). https://doi.org/10.1016/B978-0-12-809286-6.00008-X
  13. 13. Steyn, N.P.; Olivier, J.; Winter, P.; Burger, S.; Nesamvuni, C. A survey of wild, green, leafy vegetables and their potential in combating micronutrient deficiencies in rural populations. S. Afr. J. Sci. 2001; 97: 276–278.
  14. 14. Dansi, A.; Adjatin, A.; Adoukonou-Sagbadja, H.; Faladé, V.; Yedomonhan, H.; Odou, D.; Dossou, B. Traditional leafy vegetables and their use in the Benin Republic. Genet Resour Crop Evol. 2008; 55: 1239–1256. https://doi.org/10.1007/s10722-008-9324-z
  15. 15. Zakaria, Z.A.; Somchit, M.N.; Zaiton, H.; Mat Jais, A.M.; Sulaiman, M.R.; Farah, W.O.; Nazaratulmawarina, R.; Fatimah, C.A. The in vitro antibacterial activity of Corchorus olitorius extracts. Int J Pharmacol. 2006;2:213–215. https://doi.org/10.3923/ijp.2006.213.215
  16. 16. Soykut, G.; Becer, E.; Calis, I.; Yucecan, S.; Vatansever, S. Apoptotic effects of Corchorus olitorius L. leaf extracts in colon adenocarcinoma cell lines. Prog Nutr. 2018;20:689–698. https://doi.org/10.23751/pn.v20i4.6892
  17. 17. Taiwo, B.J.; Taiwo, G.O.; Olubiyi, O.O.; Fatokun, A.A. Polyphenolic compounds with anti-tumour potential from Corchorus olitorius (L.) Tiliaceae, a Nigerian leaf veget. Bioorg Med Chem Lett. 2016;26: 3404–3410. https://doi.org/10.1016/j.bmcl.2016.06.058
  18. 18. Li, C.J.; Huang, S.Y.; Wu, M.Y.; Chen, Y.C.; Tsang, S.F.; Chyuan, J.H.; Hsu, H.Y. Induction of apoptosis by ethanolic extract of Corchorus olitorius leaf in human hepatocellular carcinoma (HepG2) cells via a mitochondria-dependent pathway. Molecules 2012;17:9348–9360. https://doi.org/10.3390/molecules17089348
  19. 19. AlSamarai AM, AlObaidi HS. Cutaneous leishmaniasis in Iraq. J Infect Dev Ctries. 2009;3(02):123-9. https://doi.org/10.3855/jidc.59
  20. 20. Rahi AA. Cutaneous Leishmaniasis in Iraq: A clinicoepidemiological descriptive study. Sch J App Med Sci. 2013;1(6):1021-5. https://doi.org/10.36347/sjams.2013.v01i06.0081
  21. 21. Mancy A, Awad KM, Abd-Al-Majeed T, Jameel NF. The epidemiology of cutaneous leishmaniasis in Al-Ramadi, Iraq. Our Dermatol Online 2022;13(4):402-407. https://doi.org/10.7241/ourd.20224.11
  22. 22. Flaih MH, Alwaily ER, Hafedh AA, Hussein KR. Six-year study on cutaneous leishmaniasis in Al-Muthanna, Iraq: molecular identification using ITS1 gene sequencing. Infect Chemother. 2024;56(2):213. https://doi.org/10.3947/ic.2023.0073
  23. 23. Hamad EM, Ghaffarifar F, Dalimi A. Cutaneous Leishmaniasis in Diyala Province from Eastern Part of Iraq from 2011 to 2021. Iran J Parasitol. 2025;20(3):400-7. https://doi.org/10.18502/ijpa.v20i3.19615
  24. 24. Farhan MS, Khamees AH, Ahmed OH, AmerTawfeeq A, Yaseen YS. GC/MS analysis of n-hexane and chloroform extracts of Chenopodium murale leaves in Iraq J Pharm Res Int. Int. 2019;31(6):1-6. https://doi.org/10.9734/jpri/2019/v31i630325
  25. 25. Al-Mohammadi SS. Detection of cholesterol in suaeda baccata (Chenopodiaceae). Iraqi Journal of Pharmaceutical Sciences. 2006; 15(2):29-36. https://doi.org/10.31351/vol15iss2pp29-36
  26. 26. Jewely HM, Zuhair T. Evaluation of antileishmanial activity of osteospermum ecklonis extract of aerial parts against Leishmania donovani: in vitro (Conference Paper). Iraqi Journal of Pharmaceutical Sciences. 2022;31(Suppl.):45-53. https://doi.org/10.31351/vol31issSuppl.pp45-53
  27. 27. Al-Ogaili N. Synergistic effect of Lawsonia inermis and Peganum harmala aqueous extracts on in vitro growth of Leishmania tropica promastigotes comparison to sodium stibogluconate. Al-Qadisiyah Med J 2016;12:76-83. https://doi.org/10.28922/qmj.2016.12.22.76-83
  28. 28. Aykul S, Martinez-Hackert E. Determination of half-maximal inhibitory concentration using biosensor-based protein interaction analysis. Anal Biochem. 2016;508: 97-103. https://doi.org/10.1016/j.ab.2016.06.025
  29. 29. Sebaugh JL. Guidelines for accurate EC50/IC50 estimation. Pharm Stat. 2011;10(2): 128-34. https://doi.org/10.1002/pst.426
  30. 30. ullah Umair S, Aslam F. Alpha-Amylase and Glucoamylase Inhibitory Assessment of Methanol Extract of Fagonia Indica and its GC-MS analysis. Iraqi J Pharm Sci. 2024;33(2):121-37. https://doi.org/10.31351/vol33iss2pp121-137
  31. 31. Siswadi S, Saragih GS. Phytochemical analysis of bioactive compounds in ethanolic extract of Sterculia quadrifida R. Br. InAIP Conference Proceedings. 2021;2353;1-7. https://doi.org/10.1063/5.0053057
  32. 32. Lalthanpuii PB, Lalchhandama K. Chemical profiling, antibacterial and antiparasitic studies of Imperata cylindrica. J Appl Pharm Sci. 2019; 9:117–21. https://doi.org/10.7324/JAPS.2019.91216
  33. 33. Davoodbasha M, Edachery B, Nooruddin T, Lee S, Kim J. An evidence of C16 fatty acid methyl esters extracted from microalga for effective antimicrobial and antioxidant property. Microb Pathog. 2018; 115:233–8. https://doi.org/10.1016/j.micpath.2017.12.049
  34. 34. Shaaban MT, Ghaly MF, Fahmi SM. Antibacterial activities of hexadecanoic acid methyl ester and green-synthesized silver nanoparticles against multidrug-resistant bacteria. J Basic Microbiol. 2021 Jun; 1-12. https://doi.org/10.1002/jobm.202100061
  35. 35. Belmonte AM, Macchioni P, Minelli G, Scutaru C, Volpelli LA, Fiego DP. Effects of high linolenic acid diet supplemented with synthetic or natural antioxidant mix on live performance, carcass traits, meat quality and fatty acid composition of Longissimus thoracis et lumborum muscle of medium-heavy pigs. Ital J Food Sci. 2021;33(2):117-28. https://doi.org/10.15586/ijfs.v33i2.2005
  36. 36. Mcneil M.J., Porter R.B., Williams L.A. Chemical composition and biological activity of the essential oil from Jamaican Cleome serrata. Nat Prod Commun 2012;7:1231–1232. https://doi.org/10.1177/1934578X1200700934
  37. 37. Taj T, Dr. Sultana R, Shahin H D.H. Dr. Chakraborthy M, Dr. Ahmed M G. Phytol A Phytoconstituent, Its Chemistry And Pharmacological Actions. Gis Science Journal. 2021; 8(1): 395-406.
  38. 38. Sánchez-Quesada C, Rodríguez-García C, Gaforio JJ. In InThe Mediterranean Diet. Academic Press; 2020 Jan 1. Chapter 46, Antiinflammatory activity exerted by minor compounds found in virgin olive oils; pp. 527-535. https://doi.org/10.1016/B978-0-12-818649-7.00046-1
  39. 39. Alzubaidy N, Sahib H. Expression of vascular endothelial growth factor and anti-proliferative activity of flaxseed oil alone and in combination with mefenamic acid in cell lines. Iraqi J Pharm Sci. 2024;33(1):46-53. https://doi.org/10.31351/vol33iss1pp46-53
  40. 40. Nakaziba R, Amanya SB, Sesaazi CD, Byarugaba F, Ogwal-Okeng J, Alele PE. Antimicrobial bioactivity and GC-MS analysis of different extracts of Corchorus olitorius L leaves. Sci. World J.2022;2022(1):1-9. https://doi.org/10.1155/2022/3382302
  41. 41. Dhayal K, Kumar D. Qualitative and Quantitative Evaluation of Phytosterol from Corchorus olitorius L. Int J Adv Sci Res Manag. 2019;4(3): 33-36.
  42. 42. Saeidnia S, Manayi A, Gohari AR, Abdollahi M. The story of beta-sitosterol-a review. European J Med Plants. 2014;4(5):590-609. https://doi.org/ 10.9734/EJMP/2014/7764
  43. 43. Khamees AH, Mutlag SH, Al-Hilli FA, Bahjat AA. Evaluation of antibacterial activity of aqueous and methanol extract of Iraqi Althaea officinalis L. flowers on gastrointestinal key pathogens. Int. J Pharm Sci Rev Res. 2018;48(2):59-62.
  44. 44. Hassan AA, Khalid HE, Abdalla AH, Mukhtar MM, Osman WJ, Efferth T. Antileishmanial activities of medicinal herbs and phytochemicals in vitro and in vivo: An update for the years 2015 to 2021. Molecules. 2022;27(7579):1-32. https://doi.org/10.3390/molecules27217579
  45. 45. Domingues Passero LF, Laurenti MD, Santos-Gomes G, Soares Campos BL, Sartorelli P, G Lago JH. Plants used in traditional medicine: extracts and secondary metabolites exhibiting antileishmanial activity. Curr Clin Pharmacol. 2014;9(3):1-18. https://doi.org/10.2174/1574884709999140606161413

Downloads

Download data is not yet available.