Skip to main navigation menu Skip to main content Skip to site footer

Special call (Plant Systematics, Ethnobotany & Studies on Lower Plant Groups)

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

Diversity analysis of select tomato accessions using morphometric data

DOI
https://doi.org/10.14719/pst.11545
Submitted
30 August 2025
Published
03-11-2025

Abstract

Genetic diversity within germplasm collections is a cornerstone for effective plant breeding, providing a reservoir of traits for crop improvement, particularly in the face of escalating climate change challenges. This study aimed to characterize the morphometric diversity of 57 tomato accessions to identify key traits contributing to variation and to group genotypes with similar profiles for targeted breeding. Six morphometric traits (5 vegetative and 1 reproductive) were evaluated and found to be significantly different. Principal component analysis (PCA) and hierarchical clustering were performed. PCA revealed that the first 3 principal components, with eigenvalues of 2.4, 1.5 and 1.1, collectively accounted for the majority of the total variation. Hierarchical clustering categorized the accessions into 6 distinct morphotype based clusters. The findings highlight the existence of multidimensional variation within the germplasm, enabling the identification of genetically divergent accessions for future breeding activities. These divergent genotypes can be leveraged as valuable parental lines to develop new cultivars with improved attributes such as high yield and compact growth habit, which are crucial for enhancing tomato
breeding efforts and fostering climate-resilient agriculture.

References

  1. 1. Bai Y, Lindhout P. Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Annals of Botany. 2007;100(5):1085-94.
  2. 2. Li T, Yang X, Yu Y, Si X, Zhai X, Zhang H, et al. Domestication of wild tomato is accelerated by genome editing. Nature Biotechnology. 2018;36(12):1160-3.
  3. 3. Giovannucci E. Tomatoes, tomato-based products, lycopene and cancer: review of the epidemiologic literature. Journal of the National Cancer Institute. 1999;91(4):317-31.
  4. 4. Story EN, Kopec RE, Schwartz SJ, Harris GK. An update on the health effects of tomato lycopene. Annual Review of Food Science and Technology. 2010;1(1):189-210.
  5. 5. Frusciante L, Carli P, Ercolano MR, Pernice R, Di Matteo A, Fogliano V, et al. Antioxidant nutritional quality of tomato. Molecular Nutrition & Food Research. 2007;51(5):609-17.
  6. 6. Scholthof KBG, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, et al. Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology. 2011;12(9):938-54.
  7. 7. Champoiseau PG, Momol T. Bacterial wilt of tomato. Ralstonia Solanacearum. 2008;12.
  8. 8. Hussain I, Alam SS, Khan I, Shah B, Naeem A, Khan N, et al. Study on the biological control of fusarium wilt of tomato. Journal of Entomology and Zoology Studies. 2016;4(2):525-8.
  9. 9. Zhai P, Pörtner H, Roberts D, Skea J, Shukla P, Pirani A, et al. Global warming of 1.5 C. An IPCC special report on the impacts of global warming of 1.5 C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development and efforts to eradicate poverty. Sustainable Development and Efforts to Eradicate Poverty. 2018:32.
  10. 10. Naeem M, Zaman W, Saqib S, Shahzad A, ur Rahman S, Ahmad N. CRISPR/Cas-mediated genome editing for efficient tomato breeding: past achievements and future directions. South African Journal of Botany. 2024;172:277-88.
  11. 11. El-Mansy AB, Abd El-Moneim D, ALshamrani SM, Safhi FA, Abdein MA, Ibrahim AA. Genetic diversity analysis of tomato (Solanum lycopersicum L.) with morphological, cytological and molecular markers under heat stress. Horticulturae. 2021;7(4):65.
  12. 12. Federer WT. Augmented (or hoonuiaku) designs. The Hawaiian Planters Record. 1956;2:191-208.
  13. 13. Federer WT, Raghavarao D. On augmented designs. Biometrics. 1975;29-35.
  14. 14. Singh RK, Chaudhary BD. Biometrical methods in quantitative genetic analysis. 1981.
  15. 15. Institute IPGR. Descriptors for tomato (Lycopersicon Spp.): Bioversity International; 1996.
  16. 16. Kiymaci G, Uncu AÖ, Türkmen Ö. Description of the phenotypic characteristics of some tomato genotypes. Selcuk Journal of Agriculture & Food Sciences/Selcuk Tarim ve Gida Bilimleri Dergisi. 2024;38(1).
  17. 17. Inc SI. JMP® 16 documentation library. SAS Institute Inc Cary, NC; 2021.
  18. 18. Yang Y, Tan Z, Liang S, Cheng W, Sun Y, Cheng Y, et al. Genetic diversity analysis and comprehensive evaluation of “M82” in EMS-mutagenized tomato. Genes. 2025;16(2):179.
  19. 19. Li Q, Fu C, Yang B, Yu H, He H, Xu Q, et al. Stem lodging resistance-1 controls stem strength by positively regulating the biosynthesis of cell wall components in Capsicum annuum L. Horticulture Research. 2024;11(8):uhae169.
  20. 20. Anderson TA, Sudermann MA, DeJong DM, Francis DM, Smart CD, Mutschler MA. Detection of trait donors and QTL boundaries for early blight resistance using local ancestry inference in a library of genomic sequences for tomato. The Plant Journal. 2024;117(2):404-15.
  21. 21. Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2016;374(2065):20150202.
  22. 22. Alatawi I, Xiong H, Alkabkabi H, Chiwina K, Luo Q, Ling KS, et al. Genetic diversity and population structure of tomato (Solanum lycopersicum) from the USDA-GRIN germplasm collection. Agronomy. 2024;15(1):22.
  23. 23. Sar P, Kole PC. Principal component and cluster analyses for assessing agro-morphological diversity in rice. 2023.
  24. 24. Nwangburuka C, Kehinde O, Ojo D, Denton O, Popoola A. Morphological classification of genetic diversity in cultivated okra, Abelmoschus esculentus (L) Moench using principal component analysis (PCA) and single linkage cluster analysis (SLCA). African Journal of Biotechnology. 2011;10(54):11165-72.
  25. 25. Rufati LQ, Manasievska S. Principal component and cluster analysis as a tool in the assessment of different wheat species and their genotypes. Journal of Agricultural, Food and Environmental Sciences. JAFES. 2022;76(2):47-54.
  26. 26. Beyene DG, Jalata Z. Diversity of soybean (Glycine max L.) genotypes based on agro-morphological parameters. Journal of Pure and Applied Agriculture. 2022;7(2):30-7.
  27. 27. Grozeva S, Nankar AN, Ganeva D, Tringovska I, Pasev G, Kostova D. Characterization of tomato accessions for morphological, agronomic, fruit quality and virus resistance traits. Canadian Journal of Plant Science. 2020;101(4):476-89.

Downloads

Download data is not yet available.