Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

Spectral indices for monitoring soil heavy metal contamination: Direct soil and vegetation proxy approaches, current trends and future prospects

DOI
https://doi.org/10.14719/pst.11552
Submitted
31 August 2025
Published
05-11-2025

Abstract

Soil heavy metal (HM) contamination is a critical environmental challenge with significant implications for ecosystem health, agricultural productivity and food security. Traditional laboratory-based monitoring methods are precise but costly and inefficient for large-scale, dynamic assessment. Consequently, remote sensing using spectral indices has emerged as a powerful, non-destructive alternative for detecting and mapping contamination. This review synthesizes the current science and applications of spectral indices for monitoring HM contamination in soils and vegetation. We explain the fundamental mechanisms underlying the spectral detection of metals, which primarily occur indirectly through metal-induced changes in soil physicochemical properties and plant physiological stress. The article categorizes and evaluates a range of vegetation-based, soil-based and emerging metal-specific indices, benchmarking their accuracy, transferability and sensitivity under diverse environmental conditions. A critical analysis identifies persistent challenges, including signal interference from soil moisture and organic matter, spectral overlap with other plant stressors and the lack of standardized, universally applicable indices. Finally, we highlight key future directions, emphasizing the integration of machine learning for intelligent index design,
the fusion of optical data with thermal and radar sensors and the significant potential of next-generation spaceborne hyperspectral missions. It is concluded that the convergence of these advanced technologies could enable operational, global-scale monitoring networks, ultimately yielding valuable tools for evidence-based environmental management and remediation strategies.

References

  1. 1. Zhang J, Yang R, Li YC, Peng Y, Wen X, Ni X. Distribution, accumulation and potential risks of heavy metals in soil and tea leaves from geologically different plantations. Ecotoxicol Environ Saf. 2020;195:110475. https://doi.org/10.1016/j.ecoenv.2020.110475
  2. 2. Anthony T. Assessment of heavy metal contamination in wetlands soils around an industrial area using combined GIS based pollution indices and remote sensing techniques. Air Soil Water Res. 2023;16:11786221231214062. https://doi.org/10.1177/11786221231214062
  3. 3. Yang S, He M, Zhi Y, Chang SX, Gu B, Liu X, et al. An integrated analysis on source-exposure risk of heavy metals in agricultural soils near intense electronic waste recycling activities. Environ Int. 2019;133:105239. https://doi.org/10.1016/j.envint.2019.105239
  4. 4. Shifaw E. Review of heavy metals pollution in China in agricultural and urban soils. J Health Pollut. 2018;8(18):180607. https://doi.org/10.5696/2156-9614-8.18.180607
  5. 5. Huang Y, Chen Q, Deng M, Japenga J, Li T, Yang X, et al. Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. J Environ Manage. 2018;207:159-68. https://doi.org/10.1016/j.jenvman.2017.10.072
  6. 6. Zhong L, Chu X, Qian J, Li J, Sun Z. Multi-scale stereoscopic hyperspectral remote sensing estimation of heavy metal contamination in wheat soil over a large area of farmland. Agronomy. 2023;13(9):2396. https://doi.org/10.3390/agronomy13092396
  7. 7. Vasilachi IC, Stoleru V, Gavrilescu M. Analysis of heavy metal impacts on cereal crop growth and development in contaminated soils. Agriculture. 2023;13(10):1983. https://doi.org/10.3390/agriculture13101983
  8. 8. Paltseva A, Slukovskaya M, Romzaykina O, Sarzhanov D, Drogobuzhskaya S, Dvornikov Y, et al. Proximal sensing of soil pollution by heavy metals using a portable X-ray fluorescence analyzer in subarctic industrial barren: limitations and perspectives. Soils Urban Ecosyst. Springer; 2022. p. 243-54. https://doi.org/10.1007/978 981 16 8914 7_11
  9. 9. Shokr MS, Abdellatif MA, El Behairy RA, Abdelhameed HH, El Baroudy AA, Mohamed ES, et al. Assessment of potential heavy metal contamination hazards based on GIS and multivariate analysis in some mediterranean zones. Agronomy. 2022;12(12):3220. https://doi.org/10.3390/agronomy12123220
  10. 10. Tóth G, Hermann T, Szatmári G, Pásztor L. Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment. Sci Total Environ. 2016;565:1054-62. https://doi.org/10.1016/j.scitotenv.2016.05.115
  11. 11. Shi T, Chen Y, Liu Y, Wu G. Visible and near-infrared reflectance spectroscopy—an alternative for monitoring soil contamination by heavy metals. J Hazard Mater. 2014;265:166-76. https://doi.org/10.1016/j.jhazmat.2013.11.059
  12. 12. Han JL, Pan XD, Chen Q, Huang BF. Health risk assessment of heavy metals in marine fish to the population in Zhejiang, China. Sci Rep. 2021;11(1):11079. https://doi.org/10.1038/s41598-021-90665-x
  13. 13. Wang F, Gao J, Zha Y. Hyperspectral sensing of heavy metals in soil and vegetation: feasibility and challenges. ISPRS Journal of Photogrammetry and Remote Sensing. 2018;136:73-84. https://doi.org/10.1016/j.isprsjprs.2017.12.003
  14. 14. Kästner F, Kuester T, Feilhauer H, Sut-Lohmann M. Spectroscopy for phytoremediation: monitoring the accumulation of potential toxic elements in plants using reflectance spectra and indices. Available at SSRN 4703485. 2024. https://doi.org/10.2139/ssrn.4703485
  15. 15. Lassalle G, Fabre S, Credoz A, Hédacq R, Dubucq D, Elger A. Mapping leaf metal content over industrial brownfields using airborne hyperspectral imaging and optimized vegetation indices. Sci Rep. 2021;11:2. https://doi.org/10.1038/s41598-020-79439-z
  16. 16. Wang Y, Zhang X, Sun W, Wang J, Ding S, Liu S. Effects of hyperspectral data with different spectral resolutions on the estimation of soil heavy metal content: from ground-based and airborne data to satellite-simulated data. Sci Total Environ. 2022;838:156129. https://doi.org/10.1016/j.scitotenv.2022.156129
  17. 17. Han C, Lu J, Chen S, Xu X, Wang Z, Pei Z, et al. Estimation of heavy metal (loid) contents in agricultural soil of the suzi river basin using optimal spectral indices. Sustainability. 2021;13(21):12088. https://doi.org/10.3390/su132112088
  18. 18. Xu X, Chen S, Ren L, Han C, Lv D, Zhang Y, et al. Estimation of heavy metals in agricultural soils using vis-NIR spectroscopy with fractional-order derivative and generalized regression neural network. Remote Sens. 2021;13(14):2718. https://doi.org/10.3390/rs13142718
  19. 19. Zhang C, Ren H, Qin Q, Ersoy OK. A new narrow band vegetation index for characterizing the degree of vegetation stress due to copper: the copper stress vegetation index (CSVI). Remote Sens Lett. 2017;8(6):576-85. https://doi.org/10.1080/2150704X.2017.1306135
  20. 20. Yu K, Van Geel M, Ceulemans T, Geerts W, Ramos MM, Serafim C, et al. Vegetation reflectance spectroscopy for biomonitoring of heavy metal pollution in urban soils. Environ Pollut. 2018;243:1912-22. https://doi.org/10.1016/j.envpol.2018.09.053
  21. 21. Hede ANH, Kashiwaya K, Koike K, Sakurai S. A new vegetation index for detecting vegetation anomalies due to mineral deposits with application to a tropical forest area. Remote Sens Environ. 2015;171:83-97. https://doi.org/10.1016/j.rse.2015.10.006
  22. 22. Zhang C, Yang K, Wang M, Gao P, Cheng F, Li Y, et al. A new vegetation heavy metal pollution index for detecting the pollution degree of different varieties of maize under copper stress. Remote Sens Lett. 2019;10(5):469-77. https://doi.org/10.1080/2150704X.2023.2215942
  23. 23. Cao J, Li C, Wu Q, Qiao J. Improved mapping of soil heavy metals using a Vis-NIR spectroscopy index in an agricultural area of Eastern China. IEEE Access. 2020;8:42584-94. https://doi.org/10.1109/ACCESS.2020.2976902
  24. 24. Wang J, Cui L, Gao W, Shi T, Chen Y, Gao Y. Prediction of low heavy metal concentrations in agricultural soils using visible and near infrared reflectance spectroscopy. Geoderma. 2014;216:1-9. https://doi.org/10.1016/j.geoderma.2013.10.024
  25. 25. Chakraborty S, Weindorf DC, Deb S, Li B, Paul S, Choudhury A, et al. Rapid assessment of regional soil arsenic pollution risk via diffuse reflectance spectroscopy. Geoderma. 2017;289:72-81. https://doi.org/10.1016/j.geoderma.2016.11.024
  26. 26. Wang J, Hu X, Shi T, He L, Hu W, Wu G. Assessing toxic metal chromium in the soil in coal mining areas via proximal sensing: prerequisites for land rehabilitation and sustainable development. Geoderma. 2022;405:115399. https://doi.org/10.1016/j.geoderma.2021.115399
  27. 27. Shen Q, Xia K, Zhang S, Kong C, Hu Q, Yang S. Hyperspectral indirect inversion of heavy-metal copper in reclaimed soil of iron ore area. Spectrochimica Acta part A: Molecular and Biomolecular Spectroscopy. 2019;222:117191. https://doi.org/10.1016/j.saa.2019.117191
  28. 28. Mao Y, Liu J, Cao W, Ding R, Fu Y, Zhao Z. Research on the quantitative inversion model of heavy metals in soda saline land based on visible-near-infrared spectroscopy. Infrared Phys Technol. 2021;112:103602. https://doi.org/10.1016/j.infrared.2020.103602
  29. 29. Kemper T, Sommer S. Estimate of heavy metal contamination in soils after a mining accident using reflectance spectroscopy. Environmental Science & Technology. 2002;36(12):2742-7. https://doi.org/10.1021/es015747j
  30. 30. Sawut R, Kasim N, Abliz A, Hu L, Yalkun A, Maihemuti B, et al. Possibility of optimized indices for the assessment of heavy metal contents in soil around an open pit coal mine area. Int J Appl Earth Obs Geoinf. 2018;73:14-25. https://doi.org/10.1016/j.jag.2018.05.018
  31. 31. Pyo J, Hong SM, Kwon YS, Kim MS, Cho KH. Estimation of heavy metals using deep neural network with visible and infrared spectroscopy of soil. Sci Total Environ. 2020;741:140162. https://doi.org/10.1016/j.scitotenv.2020.140162
  32. 32. Zhou M, Zou B, Tu Y, Feng H, He C, Ma X, et al. Spectral response feature bands extracted from near standard soil samples for estimating soil Pb in a mining area. Geocarto Int. 2022;37(26):13248-67. https://doi.org/10.1080/10106049.2022.2076921
  33. 33. Lassalle G, Fabre S, Credoz A, Dubucq D, Elger A. Monitoring oil contamination in vegetated areas with optical remote sensing: a comprehensive review. J Hazard Mater. 2020;393:122427. https://doi.org/10.1016/j.jhazmat.2020.122427
  34. 34. Horler DNH, Barber J, Barringer AR. Effects of heavy metals on the absorbance and reflectance spectra of plants. Int J Remote Sens. 1980;1(2):121-36. https://doi.org/10.1080/01431168008547550
  35. 35. Clevers J, Kooistra L, Salas E. Study of heavy metal contamination in river floodplains using the red-edge position in spectroscopic data. Int J Remote Sens. 2004;25(19):3883-95. https://doi.org/10.1080/01431160310001654473
  36. 36. Mirzaei M, Verrelst J, Marofi S, Abbasi M, Azadi H. Eco-friendly estimation of heavy metal contents in grapevine foliage using infield hyperspectral data and multivariate analysis. Remote Sens. 2019;11(23):2731. https://doi.org/10.3390/rs11232731
  37. 37. Fusaro L, Lanni F, Varone L, Falasca G, Serranti S, Gasbarrone R, et al. Functional traits as indicators of maize (Zea mays L.) strategies to cope with Zn, Pb and Cr heavy metal-induced stress. Chemical and Biological Technologies in Agriculture. 2025;12(1):82. https://doi.org/10.1186/s40538 025 00798 8
  38. 38. Feki K, Tounsi S, Mrabet M, Mhadhbi H, Brini F. Recent advances in physiological and molecular mechanisms of heavy metal accumulation in plants. Environ Sci Pollut Res. 2021;28(46):64967-86. https://doi.org/10.1007/s11356 021 16805 y
  39. 39. Hafeez A, Rasheed R, Ashraf MA, Qureshi FF, Hussain I, Iqbal M. Effect of heavy metals on growth, physiological and biochemical responses of plants. Plants and their interaction to environmental pollution: Elsevier; 2023. p. 139-59. https://doi.org/10.1016/B978 0323 99978 6.00006 6
  40. 40. Clijsters H, Cuypers A, Vangronsveld J. Physiological responses to heavy metals in higher plants; defence against oxidative stress. Zeitschrift für Naturforschung C. 1999;54(9-10):730-4. https://doi.org/10.1515/znc 1999 9 1018
  41. 41. MacFarlane GR, Burchett MD. Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the Grey mangrove, Avicennia marina (Forsk.) Vierh. Mar Pollut Bull. 2001;42(3):233-40. https://doi.org/10.1016/S0025 326X(00)00147 8
  42. 42. Saikachout S, Benmansoura A, Ennajah A, Leclerc JC, Ouerghi Z, Karray Bouraoui N. Effects of metal toxicity on growth and pigment contents of annual halophyte (A. hortensis and A. rosea). Int J Environ Res. 2015;9:613-20.
  43. 43. Kosakivska IV, Babenko LM, Romanenko KO, Korotka IY, Potters G. Molecular mechanisms of plant adaptive responses to heavy metals stress. Cell Biol Int. 2021;45(2):258-72. https://doi.org/10.1002/cbin.11503
  44. 44. Mansoor S, Ali A, Kour N, Bornhorst J, AlHarbi K, Rinklebe J, et al. Heavy metal induced oxidative stress mitigation and ROS scavenging in plants. Plants. 2023;12(16):3003. https://doi.org/10.3390/plants12163003
  45. 45. Rucińska-Sobkowiak R. Water relations in plants subjected to heavy metal stresses. Acta Physiologiae Plantarum. 2016;38(11). https://doi.org/10.1007/s11738 016 2277 5
  46. 46. Khdery GA, Helal N, Saleh H. Using hyperspectral indices for investigation polluted plants and soil in Abu Zabaal area, Egypt. Acta Ecologica Sinica. 2023;43(5):776-84. https://doi.org/10.1016/j.chnaes.2022.10.006
  47. 47. Zhang Z, Liu M, Liu X, Zhou G. A new vegetation index based on multitemporal Sentinel-2 images for discriminating heavy metal stress levels in rice. Sensors. 2018;18(7):2172. https://doi.org/10.3390/s18072172
  48. 48. Liu Z, Lu Y, Peng Y, Zhao L, Wang G, Hu Y. Estimation of soil heavy metal content using hyperspectral data. Remote Sens. 2019;11(12):1464. https://doi.org/10.3390/rs11121464
  49. 49. Jin M, Liu X, Zhang B. Evaluating heavy-metal stress levels in rice using a theoretical model of canopy-air temperature and leaf area index based on remote sensing. IEEE J Sel Top Appl Earth Obs Remote Sens. 2017;10(7):3232-42. https://doi.org/10.1109/JSTARS.2017.2669204
  50. 50. Zhang C, Xia T, Yang K. Diagnosis of sensitive leaf types and spectral segments during maize heading stage under simulated copper stress environment in mining areas. Remote Sens Lett. 2024;15(12):1239-49. https://doi.org/10.1080/2150704X.2024.2424507
  51. 51. Rouse JWJr, Haas RH, Schell JA, Deering DW. Monitoring vegetation systems in the great plains with ERTS. NASA. Goddard Space Flight Center 3d ERTS-1 Symp., Vol. 1, Sect. A; 1974.
  52. 52. Huete AR, Liu H, van Leeuwen WJ. The use of vegetation indices in forested regions: issues of linearity and saturation. IGARSS'97 1997 IEEE international geoscience and remote sensing symposium proceedings remote sensing-a scientific vision for sustainable development; 1997: IEEE.
  53. 53. Rondeaux G, Steven M, Baret F. Optimization of soil-adjusted vegetation indices. Remote Sens Environ. 1996;55(2):95-107. https://doi.org/10.1016/0034 4257(95)00186 7
  54. 54. Moran M, Clarke T, Inoue Y, Vidal A. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens Environ. 1994;49(3):246-63. https://doi.org/10.1016/0034 4257(94)90020 5
  55. 55. Zhou W, Zhang J, Zou M, Liu X, Du X, Wang Q, et al. Feasibility of using rice leaves hyperspectral data to estimate CaCl2-extractable concentrations of heavy metals in agricultural soil. Sci Rep. 2019;9(1):16084. https://doi.org/10.1038/s41598 019 52560 1
  56. 56. Barnes E, Clarke T, Richards S, Colaizzi P, Haberland J, Kostrzewski M, et al. Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. Proceedings of the fifth international conference on precision agriculture, Bloomington, MN, USA; 2000; 1356.
  57. 57. Gitelson AA, Merzlyak MN, Chivkunova OB. Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochem Photobiol. 2001;74(1):38-45. https://doi.org/10.1562/00318655(2001)074<0038:OPANEO>2.0.CO;2
  58. 58. Haboudane D, Miller JR, Pattey E, Zarco-Tejada PJ, Strachan IB. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sens Environ. 2004;90(3):337-52. https://doi.org/10.1016/j.rse.2003.12.013
  59. 59. Daughtry CS, Walthall C, Kim M, De Colstoun EB, McMurtrey Iii J. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens Environ. 2000;74(2):229-39. https://doi.org/10.1016/S0034 4257(00)00113 9
  60. 60. Gao BC. NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ. 1996;58(3):257-66. https://doi.org/10.1016/S0034 4257(96)00067 3
  61. 61. Huete AR. A soil-adjusted vegetation index (SAVI). Remote Sens Environ. 1988;25(3):295-309. https://doi.org/10.1016/0034 4257(88)90106 X
  62. 62. Peñuelas J, Gamon J, Fredeen A, Merino J, Field C. Reflectance indices associated with physiological changes in nitrogen-and water-limited sunflower leaves. Remote Sens Environ. 1994;48(2):135-46. https://doi.org/10.1016/0034 4257(94)90136 8
  63. 63. Zhou C, Chen S, Zhao J, Song D, Fan X. Detection of alone stress and combined stress by Cu and Ni in wheat using visible to near-infrared spectroscopy. Paper presented at: proceedings of the 2018 7th international conference on agro-geoinformatics (Agrogeoinformatics); 2018 August 6-9, Hangzhou, China: 1-6. https://doi.org/10.1109/Agro Geoinformatics.2018.8476047
  64. 64. Zea M, Souza A, Yang Y, Lee L, Nemali K, Hoagland L. Leveraging high-throughput hyperspectral imaging technology to detect cadmium stress in two leafy green crops and accelerate soil remediation efforts. Environ Pollut. 2022;292:118405. https://doi.org/10.1016/j.envpol.2021.118405
  65. 65. D’Emilio M, Macchiato M, Ragosta M, Simoniello T. A method for the integration of satellite vegetation activities observations and magnetic susceptibility measurements for monitoring heavy metals in soil. J Hazard Mater. 2012;241:118-26. https://doi.org/10.1016/j.jhazmat.2012.09.021
  66. 66. Liu M, Chen G, Wen Y, Wu L, Wang T. Combining radiative transfer model with statistical model for distinguishing heavy metal stress level in rice from Sentinel-2 satellite images. J Appl Remote Sens. 2024;18(4):044516. https://doi.org/10.1117/1.JRS.18.044516
  67. 67. Zhang B, Wu D, Zhang L, Jiao Q, Li Q. Application of hyperspectral remote sensing for environment monitoring in mining areas. Environ Earth Sci. 2012;65(3):649-58. https://doi.org/10.1007/s12665-011-1112-y
  68. 68. Liu S, Liu X, Liu M, Wu L, Ding C, Huang Z. Extraction of rice phenological differences under heavy metal stress using EVI timeseries from HJ-1A/B Data. Sensors. 2017;17(6):1243. https://doi.org/10.3390/s17061243
  69. 69. Liu T, Liu X, Liu M, Wu L. Classification of rice heavy metal stress levels based on phenological characteristics using remote sensing time-series images and data mining algorithms. Sensors. 2018;18(12):4425. https://doi.org/10.3390/s18124425
  70. 70. Wu C, Liu M, Liu X, Wang T, Wang L. Developing a new spectral index for detecting cadmium-induced stress in rice on a regional scale. Int J Environ Res Public Health. 2019;16(23):4811. https://doi.org/10.3390/ijerph16234811
  71. 71. Kayet N, Pathak K, Singh C, Bhattacharya BK, Chaturvedi RK, Brahmandam AS, et al. Detection and mapping of vegetation stress using AVIRIS-NG hyperspectral imagery in coal mining sites. Advances in Space Research. 2024;73(2):1368-78. https://doi.org/10.1016/j.asr.2023.03.002
  72. 72. Zou X, Liu X, Liu M, Liu M, Zhang B. A framework for rice heavy metal stress monitoring based on phenological phase space and temporal profile analysis. Int J Environ Res Public Health. 2019;16(3):350. https://doi.org/10.3390/ijerph16030350
  73. 73. Li X, Li L, Liu X. Collaborative inversion heavy metal stress in rice by using two-dimensional spectral feature space based on HJ-1 A HIS and radarsat-2 SAR remote sensing data. Int J Appl Earth Obs Geoinf. 2019;78:39-52. https://doi.org/10.1016/j.jag.2018.12.011
  74. 74. Zhang Y, Liu M, Kong L, Peng T, Xie D, Zhang L, et al. Temporal characteristics of stress signals using GRU algorithm for heavy metal detection in rice based on Sentinel-2 images. Int J Environ Res Public Health. 2022;19(5):2567. https://doi.org/10.3390/ijerph19052567
  75. 75. Tang Y, Liu M, Liu X, Wu L, Zhao B, Wu C. Spatio-temporal index based on time series of leaf area index for identifying heavy metal stress in rice under complex stressors. Int J Environ Res Public Health. 2020;17(7):2265. https://doi.org/10.3390/ijerph17072265
  76. 76. Yang Y, Cui Q, Jia P, Liu J, Bai H. Estimating the heavy metal concentrations in topsoil in the Daxigou mining area, China, using multispectral satellite imagery. Sci Rep. 2021;11(1):11718. https://doi.org/10.1038/s41598 021 91103 8
  77. 77. Tan K, Ma W, Wu F, Du Q. Random forest-based estimation of heavy metal concentration in agricultural soils with hyperspectral sensor data. Environ Monit Assess. 2019;191(7):446. https://doi.org/10.1007/s10661 019 7466 3
  78. 78. Tan M, Zhang X, Luo W, Hao M. Deep learning based spatial distribution estimation of soil Pb using multi-phase multispectral remote sensing images in a mining area. Land. 2023;12(9):1789. https://doi.org/10.3390/land12091789
  79. 79. Saha A, Sen Gupta B, Patidar S, Martínez-Villegas N. Identification of soil arsenic contamination in rice paddy field based on hyperspectral reflectance approach. Soil Syst. 2022;6(1):30. https://doi.org/10.3390/soilsystems6010030
  80. 80. Huang J, Wei C, Zhang Y, Blackburn GA, Wang X, Wei C, et al. Meta analysis of the detection of plant pigment concentrations using hyperspectral remotely sensed data. PLoS One. 2015;10(9):e0137029. https://doi.org/10.1371/journal.pone.0137029
  81. 81. Nakashima S, Yamakita E. In situ visible spectroscopic daily monitoring of senescence of Japanese maple (Acer palmatum) leaves. Life. 2023;13(10):2030. https://doi.org/10.3390/life13102030
  82. 82. Wang P, Huang F, Liu X. A simple interpretation of the rice spectral indices space for assessment of heavy metal stress. Int Arch Photogramm Remote Sens Spat Inf Sci. 2016;41:129-35. https://doi.org/10.5194/isprs archives XLI B7 129 2016
  83. 83. Cao J, Liu W, Feng Y, Liu J, Ni Y. Predicting nickel concentration in soil using fractional-order derivative and visible-near-infrared spectroscopy indices. PLoS One. 2024;19(8):e0302420. https://doi.org/10.1371/journal.pone.0302420
  84. 84. Fu P, Zhang J, Yuan Z, Feng J, Zhang Y, Meng F, et al. Estimating the heavy metal contents in entisols from a mining area based on improved spectral indices and Catboost. Sensors. 2024;24(5):1492. https://doi.org/10.3390/s24051492
  85. 85. Zhang C, Ren H, Dai X, Qin Q, Li J, Zhang T, et al. Spectral characteristics of copper-stressed vegetation leaves and further understanding of the copper stress vegetation index. Int J Remote Sens. 2019;40(12):4473-88. https://doi.org/10.1080/01431161.2018.1563842
  86. 86. Jiang G, Zhou K, Wang J, Sun G, Cui S, Chen T, et al. Estimation of rock copper content based on fractional-order derivative and visible near infrared-shortwave infrared spectroscopy. Ore Geology Reviews. 2022;150:105092. https://doi.org/10.1016/j.oregeorev.2022.105092
  87. 87. Mahyoub S, Fadil A, Mansour E, Rhinane H, Al-Nahmi F. Fusing of optical and synthetic aperture radar (SAR) remote sensing data: a systematic literature review (SLR). Int Arch Photogramm Remote Sens Spat Inf Sci. 2019;42:127-38. https://doi.org/10.5194/isprsarchives XLII 4 W12 127 2019
  88. 88. Rathod PH, Rossiter DG, Noomen MF, van der Meer FD. Proximal spectral sensing to monitor phytoremediation of metal contaminated soils. Int Phytorem. 2013;15(5):405-26. https://doi.org/10.1080/15226514.2012.702805
  89. 89. Wu Y, Chen J, Ji J, Gong P, Liao Q, Tian Q, et al. A mechanism study of reflectance spectroscopy for investigating heavy metals in soils. Soil Sci Soc Am J. 2007;71(3):918-26. https://doi.org/10.2136/sssaj2006.0285
  90. 90. Nawar S, Buddenbaum H, Hill J, Kozak J, Mouazen AM. Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy. Soil and Tillage Res. 2016;155:510-22. https://doi.org/10.1016/j.still.2015.07.021
  91. 91. Liu M, Liu X, Zhang B, Ding C. Regional heavy metal pollution in crops by integrating physiological function variability with spatiotemporal stability using multi-temporal thermal remote sensing. Int J Appl Earth Obs Geoinf. 2016;51:91-102. https://doi.org/10.1016/j.jag.2016.05.003
  92. 92. Wenlong Q, Tang T, He S, Zeyong Z, Jinhong L, Jiacheng G, et al. Inversion studies on the heavy metal content of farmland soils based on spectroscopic techniques: a review. Agronomy. 2025;15(7):1678. https://doi.org/10.3390/agronomy15071678
  93. 93. Li Y, Yang K, Wu B, Wang S, Hou Z, Ding X. Identification of soil heavy metal pollution by constructing 2D plane using hyperspectral index. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2022;278:121318. https://doi.org/10.1016/j.saa.2022.121318

Downloads

Download data is not yet available.