Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 4 (2025)

Principal component and cluster analysis of yield and its contributing traits in sesame (Sesamum indicum L.) genotypes

DOI
https://doi.org/10.14719/pst.11556
Submitted
31 August 2025
Published
05-11-2025 — Updated on 18-11-2025
Versions

Abstract

Sesamum indicum L. (sesame) is an important oilseed crop valued for its high-quality oil and adaptability to diverse agro-climatic conditions. The present study assessed genetic variability, heritability, genetic advance, correlation, path analysis, genetic divergence and principal component analysis for 14 yield contributing traits across 28 sesame genotypes. The genotypes were evaluated over two years using a randomised complete block design. Analysis of variance revealed highly significant differences (p < 0.01) among genotypes for all traits, indicating the presence of substantial genetic variability. High genotypic and phenotypic coefficients of variation were observed for seed yield per plant and number of capsules per plant. Traits such as seed yield per plant, oil content, harvest index, number of capsules per plant and days to 75 % maturity exhibited high heritability coupled with high genetic advance, suggesting predominant additive gene action. Genotypic correlation analysis indicated significant positive associations of seed yield per plant with stem height of the first capsule, plant height, number of seeds per capsule, 1000 seed weight, capsule length and harvest index. Path analysis identified plant height, number of capsules per plant, number of seeds per capsule, oil content and 1000-seed weight as key traits with the highest direct effects on seed yield. Mahalanobis D² analysis grouped genotypes into seven distinct clusters, with the highest inter-cluster distance observed between Clusters IV and V, indicating substantial genetic divergence between these groups. Principal component analysis (PCA) revealed six components accounting for 77.76 % of the total variation, with PC1 driven primarily by seed yield per plant and number of capsules per plant. Diverse genotypes such as IC-203945, NIC-1005 and PRACHI were identified as promising parents for hybridisation programs aimed at generating transgressive segregants.

References

  1. 1. Yadav R, Kalia S, Rangan P, Pradheep K, Rao GP, Kaur V, et al. Current research trends and prospects for yield and quality improvement in sesame, an important oilseed crop. Front Plant Sci. 2022;13:863521. https://doi.org/10.3389/fpls.2022.863521
  2. 2. Pathak N, Rai AK, Kumari R, Bhat KV. Value addition in sesame: A perspective on bioactive components for enhancing utility and profitability. Pharmacogn Rev. 2014;8(16):147–55. https://doi.org/10.4103/0973-7847.134249
  3. 3. Coniglio S, Shumskaya M, Vassiliou E. Unsaturated fatty acids and their immunomodulatory Properties. Biology (Basel). 2023;12(2):279. https://doi.org/10.3390/biology12020279
  4. 4. Wei P, Zhao F, Wang Z, Wang Q, Chai X, Hou G, et al. Sesame (Sesamum indicum L.): a comprehensive review of nutritional value, phytochemical composition, health benefits, development of food and industrial applications. Nutrients. 2022;14(19):4079. https://doi.org/10.3390/nu14194079
  5. 5. Tripathi SM, Kalia A, Mishra BP, Mishra S, Mishra D, Shukla G. Trends in area production and productivity of sesame in bundelkhand region of Uttar Pradesh. Indian J Ext Educ. 2023;59(4):40–3.
  6. 6. Rauf S, Basharat T, Gebeyehu A, Elsafy M, Rahmatov M, Ortiz R, et al. Sesame, an underutilized oil seed crop: Breeding achievements and future challenges. Plants. 2024;13(18):2662. https://doi.org/10.3390/plants13182662
  7. 7. Hukumchand, Parameshwarappa SG. Genetically potential sesame (Sesamum indicum L.) breeding lines. J Farm Sci. 2020;33(03):302–5. https://doi.org/10.61475/jfm.v33i03.224
  8. 8. Rout S, Sur B, Sadhu S, Ghimiray TS, Mondal HA, Hijam L, et al. Trait’s association, cause and effect analyses in Indian mustard [Brassica juncea (L.) Czern & Coss]. Electron J Plant Breed. 2019;10(4):1482–94.
  9. 9. Sur B, Rout S, Singla S, Mandal R, Nath S, Maying B, et al. Evaluation of mustard genotypes [Brassica juncea (L.) Czern and Coss] for quantitative traits and character association of seed yield and yield components at sub Himalayan region of West Bengal (India). Plant Sci Today. 2023;10(1):166–78. https://doi.org/10.14719/pst.1948
  10. 10. Mawcha KT, Gebru MM, Assefa MK, Mesfin M, Gebre GG. Morphological characterization and genetic diversity of sesame (Sesamum indicum L.) varieties cultivated in Ethiopia. Open Agric J. 2020;14:117–29.
  11. 11. Mohanty TA, Singh UK, Singh SK, Singh D, Kushwaha N. Assessment of genetic diversity in Sesame (Sesamum indicum L.) based on agro-morphological traits. Curr J Appl Sci Technol. 2020;39(25):100–7. https://doi.org/10.9734/cjast/2020/v39i2530890
  12. 12. Umamaheswari D, Suganthi S, Thirumeni S, Kumar PS, Bhuvaneswari R. Principal component analysis, a multivariate technique to assess yield-contributory traits in the sesame germplasm. Ecol Environ Conserv. 2024;30(04):1939–43. https://doi.org/10.53550/EEC.2024.v30i04.077
  13. 13. Rout S, Roy SK, Mandal R, Singla S, Rahimi M, Sur B, et al. Genetic analysis and heterosis breeding of seed yield and yield attributing traits in Indian mustard (Brassica juncea (L.) Czern & Coss.). Sci Rep. 2025;15:2911. https://doi.org/10.1038/s41598-025-86621-8
  14. 14. Soxhlet F. The weight analytic determination of milk fat. Polytechnisches J. 1879;232:461–5.
  15. 15. Panse VG, Sukhatme PV. Statistical methods for agricultural workers. New Delhi: Indian Council of Agricultural Research; 1954.
  16. 16. Felipe M, Yaseen M. Agricolae: Statistical Procedures for Agricultural Research [Internet]. R package version 1.40.; 2020 [cited 2025 Oct 13]. https://myaseen208.github.io/agricolae/https://cran.r-project.org/package=agricolae
  17. 17. Burton GW. Quantitative in-heritance in grass. In: Proceedings of the Sixth International Grassland Congress 1952, Pennsylvania; 1952.
  18. 18. Sivasubramanian V, Madhavamenon P. Path analysis for yield and yield component of rice. Madras Agric J. 1973;60:1217–21.
  19. 19. Johnson HW, Robinson HF, Comstock RE. Estimates of genetic and environmental variability in Soybeans 1. Agron J. 1955;47. https://doi.org/10.2134/agronj1955.00021962004700070009x
  20. 20. Allard RW. Principles of Plant Breeding. New York, London: J. Wiley & Sons Ltd; 1961.
  21. 21. Popat R, Patel R, Parmar D. Genetic variability analysis for Plant Breeding research [Internet]. R package [internet]; 2020 [cited 2025 Oct 13]. https://cran.r-project.org/web/packages/variability/variability.pdf
  22. 22. Olivoto T, Lúcio AD. metan: An R package for multi-environment trial analysis. Methods Ecol Evol. 2020;11:783–9. https://doi.org/10.1111/2041-210X.13384
  23. 23. Wei T, Simko V, Levy M, Xie Y, Jin YJ, Zemla J. Visualization of a Correlation Matrix. R package “corrplot. Statistician. 2017;56.
  24. 24. Wright S. Correlation and Causation. J Agric Res. 1921;20:557–85.
  25. 25. Dewey DR, Lu KH. A Correlation and path-coefficient analysis of components of Crested Wheatgrass Seed Production 1. Agron J. 1959;51. https://doi.org/10.2134/agronj1959.00021962005100090002x
  26. 26. Mahalanobis PC. Reprint of: Mahalanobis, P.C. (1936) On the Generalised Distance in Statistics. Sankhya A. 1936;80:1–7. https://doi.org/10.1007/s13171-019-00164-5
  27. 27. Galili T. Dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics. 2015;31(22):3718–20. https://doi.org/10.1093/bioinformatics/btv428
  28. 28. Lê S, Josse J, Husson F. FactoMineR : An R Package for multivariate analysis. J Stat Softw. 2008;25. https://doi.org/10.18637/jss.v025.i01
  29. 29. Kassambara A, Mundt F. Package ‘factoextra’ [Internet]. CRAN- R Package.; 2020 [cited 2025 Oct 13]. Available from: https://cran.r-project.org/web/packages/factoextra/factoextra.pdf
  30. 30. Vamshi P, Ramya KT, Prasad MS, Ramana J V, Kumhar SR. Genetic variability studies for yield and yield attributes in breeding lines of sesame (Sesamum indicum L.). J Oilseeds Res. 2021;38(3):240–3.
  31. 31. Abhijatha A, Arya K, Madhukar K, Gogineni S. Evaluation of Sesame (Sesamum indicum L.) genotypes to the shaded uplands of southern region. Int J Curr Microbiol App Sci. 2017;6(7):332–9. https://doi.org/10.20546/ijcmas.2017.607.039
  32. 32. Padmaja D, Babu TK, Rani TS, Reddy R U. Genetic variation in sesame genotypes (Sesamum indicum L.) grown in Telangana. J Oilseeds Res. 2020;37(Special issue). https://doi.org/10.56739/jor.v37iSpecialissue.139128
  33. 33. Mohanty TA, Singh UK, Singh SK, Kushwaha N, Singh D. Study of genetic variability, heritability and genetic advance in Sesame (Sesamum indicum L.) Genotypes. Int J Curr Microbiol Appl Sci. 2020;9(2):347–56. https://doi.org/10.20546/ijcmas.2020.902.044
  34. 34. Ranjithkumar G, Bisen R, Kumar V. Genetic variability studies for yield and its attributing traits in dark brown Sesame (Sesamum indicum L.). Int J Plant Soil Sci. 2022;34(8):43–9. https://doi.org/10.9734/ijpss/2022/v34i830897
  35. 35. Wang C, Niu J, Miao H, Li C, Duan Y, Ju M, et al. Genetic variation, correlation and association mapping of seed yield and its component traits in sesame. Genet Resour Crop Evol. 2024;71:603–19. https://doi.org/10.1007/s10722-023-01644-2
  36. 36. Gedifew S, Demelash H, Abate A, Abebe TD. Association of quantitative traits and genetic diversity in Ethiopian sesame (Sesamum indicum L.) genotypes. Heliyon. 2024;10:e26676. https://doi.org/10.1016/j.heliyon.2024.e26676
  37. 37. Abate M, Mekbib F. Study on genetic divergence in low-altitude sesame (Sesamum indicum L.) germplasm of Ethiopia based on agro morphological traits. J Agric Biol Environ Stat. 2015;2(3):78–90.
  38. 38. Sasipriya S, Paimala K, Eswari KB, Balram M. Correlation and path analysis for seed yield and its components in sesame (Sesamum indicum L.). Electron J Plant Breed. 2018;9(4):1594. https://doi.org/10.5958/0975-928X.2018.00199.0
  39. 39. Hukumchand, Parameshwarappa SG. Character Association and Path Analysis for Quantitative Traits in Advanced Breeding Lines of Sesame (Sesamum indicum L.). Int J Curr Microbiol Appl Sci. 2019;8(12):2980–90. https://doi.org/10.20546/ijcmas.2019.812.346
  40. 40. Srikanth K, Ghodke MK. Correlation and Path Analysis in Sesame (Sesamum indicum L.) Genotypes. Int J Plant Soil Sci. 2022;34(18):228–35. https://doi.org/10.9734/ijpss/2022/v34i1831075.
  41. 41. Swapna B, Thippani S, Padmaja D, Nayak SS. Genetic diversity for yield and yield contributing characters in Sesame (Sesamum indicum L.). Int J Environ Clim Change. 2023;13(8):1717–25.
  42. 42. Yadav S, Thiruvengadam BP V, Sasikala R, Rajendran L. Analysis of genetic diversity in sesame (Sesamum indicum L.) germplasm for yield and its attributing traits. Electron J Plant Breed. 2022;13(3):927–31. https://doi.org/10.37992/2022.1303.121
  43. 43. Nikfekr R, Kazemitabar SK, Ranjbar GA, Hashemi SH, Mehraban Joubani P. Study of genetic diversity and evaluation of some sesame genotypes under salinity stress. Environ Stress Crop Sci. 2023;16(3):575–86.
  44. 44. Baraki F, Berhe M. Evaluating Performance of Sesame (Sesamum indicum L.) Genotypes in Different Growing Seasons in Northern Ethiopia. Int J Agron. 2019;1–7. https://doi.org/10.1155/2019/7804621
  45. 45. Shim KB, Shin SH, Shon JY, Kang SG, Yang WH, Heu SG. Classification of a collection of sesame germplasm using multivariate analysis. J Crop Sci Biotechnol. 2016;19(2):151–5. https://doi.org/10.1007/s12892-015-0099-4
  46. 46. Baraki F, Gebregergis Z, Belay Y, Berhe M, Teame G, Hassen M, et al. Multivariate analysis for yield and yield-related traits of sesame (Sesamum indicum L.) genotypes. Heliyon. 2020;6(10):e05295. https://doi.org/10.1016/j.heliyon.2020.e05295
  47. 47. Biabani AR, Pakniyat H. Evaluation of seed yield-related characters in Sesame (Sesamum indicum L.) using factor and path analysis. Pak J Biol Sci. 2008;11(8):1157–60. https://doi.org/10.3923/pjbs.2008.1157.1160
  48. 48. Asghari A, Dargahi Y, Rasoulzadeh A, Ahmadian M. Study of sesame (Sesame indicum L.) cultivars based on morphological characteristics under water deficit stress condition using factor analysis. [journal name unknown]. 2014;14(11):593–607.
  49. 49. Kumar A, Swapnil, Perween S, Singh RS, Singh DN. Prospects of molecular markers in precision Plant Breeding. In: Jha AK, Kumar U, editors. Recent advances in Chemical Sciences and Biotechnology. New Delhi: New Delhi Publishers; 2020. p. 132–42.
  50. 50. Swapnil, Jaishreepriyanka R, Singh D, Mandal SS. Principal component analysis in maize (Zea mays L.) under normal sown condition of Bihar. Pharma Innov J. 2021;10:641–4.

Downloads

Download data is not yet available.