Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Molecular and morphological characterization reveals high genetic diversity among okra (Abelmoschus esculentus (L.) Moench) genotypes

DOI
https://doi.org/10.14719/pst.11603
Submitted
3 September 2025
Published
28-01-2026

Abstract

This study investigated the genetic diversity of 25 okra (Abelmoschus esculentus (L.) Moench) genotypes using phenotypic and molecular characterization methods. Phenotypic analysis of 11 quantitative traits revealed significant divergence among accessions, particularly for traits such as the coefficient of infection, average fruit weight, fruit yield and number of fruits per plant. High Phenotypic Coefficient of Variation (PCV) and Genotypic Coefficient of Variation (GCV) values were observed for plant height, number of branches per plant, number of nodes per plant, average fruit weight, fruit yield and coefficient of infection. High heritability with genetic advance as a percentage of mean was observed for plant height, number of branches per plant, number of nodes per plant, internodal length, number of fruits per plant, fruit length, fruit girth, average fruit weight, fruit yield and coefficient of infection. The germplasm was categorised into six groups after Mahalanobis D2 analysis. Molecular characterisation of the 50 SSR markers identified substantial genetic diversity. 21 markers were polymorphic, exhibiting 2-4 alleles per locus. Fifteen SSR markers showed high polymorphism information content values exceeding 0.5, with a range of 0.41 to 0.8. Jaccard's similarity coefficient ranged from 0.17 to 0.86 (average 0.63). Phenotypic and molecular analyses clustered the genotypes into six distinct groups, underscoring the considerable genetic variability within the studied okra germplasm. These findings provide valuable resources for future okra breeding programs.

References

  1. 1. Sanwal SK, Venkataravanappa V, Singh B. Resistance to bhendi yellow vein mosaic disease: a review. Indian J Agric Sci. 2016;86:835-43. https://doi.org/10.56093/ijas.v86i7.59721
  2. 2. Cobb KM, Westphal N, Sayani HR, Watson JT, Di Lorenzo E, Cheng H, et al. Highly variable El Niño-southern oscillation throughout the Holocene. Science. 2013;339:67-70. https://doi.org/10.1126/science.1228246
  3. 3. Bhanu NV, Sidoli S, Garcia BA. Histone modification profiling reveals differential signatures associated with human embryonic stem cell self-renewal and differentiation. Proteomics. 2016;16:448-58. https://doi.org/10.1002/pmic.201500231
  4. 4. Bharath Kumar C, Chowdhury SD, Ghatak SK, Sreekar D, Kurien RT, David D, et al. Immediate and long-term outcome of corrosive ingestion. Indian J Gastroenterol. 2019;38:356-61. https://doi.org/10.1007/s12664-019-00978-z
  5. 5. Shetty AA, Magadum S, Managanvi K. Vegetables as sources of antioxidants. J Food Nutr Disord. 2013;2:2. https://doi.org/10.4172/2324-9323.1000104
  6. 6. Schafleitner R, Kumar S, Lin CY, Hegde SG, Ebert A. The okra (Abelmoschus esculentus) transcriptome as a source for gene sequence information and molecular markers for diversity analysis. Gene. 2013;517:27-36. https://doi.org/10.1016/j.gene.2012.12.098
  7. 7. Abd El-Fattah BE, Haridy AG, Abbas HS. Response to planting date, stress tolerance and genetic diversity analysis among okra (Abelmoschus esculentus (L.) Moench) varieties. Genet Resour Crop Evol. 2020;67:831-51. https://doi.org/10.1007/s10722-019-00821-6
  8. 8. Cong-Ying Y, Wang P, Chen P, Xiao W, Zhang C, Hu S, et al. Genetic diversity revealed by morphological traits and ISSR markers in 48 okras (Abelmoschus esculentus L.). Physiol Mol Biol Plants. 2015;21:359-64. https://doi.org/10.1007/s12298-015-0303-5
  9. 9. Kumar A, Solankey SS, Adarsh A, Verma RB. Assessment of genetic diversity in okra (Abelmoschus esculentus (L.) Moench) for yield and yellow vein mosaic virus incidence. Int J Agric Environ Biotechnol. 2016;9:485-91. https://doi.org/10.5958/2230-732X.2016.00064.4
  10. 10. Wang R, Li W, He Q, Zhang H, Wang M, Zheng X, et al. The genome of okra (Abelmoschus esculentus) provides insights into its genome evolution and high nutrient content. Hortic Res. 2023;10:uhad120. https://doi.org/10.1093/hr/uhad120
  11. 11. Zate DK, Rathod AH, Khan FS, Shelke S. Genetic divergence studies in okra (Abelmoschus esculentus (L.) Moench). Int J Res Agric. 2024;7:41-47. https://doi.org/10.33545/2618060X.2024.v7.i7Sa.982
  12. 12. Ibrahim OM, Adeyemo OA, Osibote AT, Esene F, Bello OM, Bhadmus OA, et al. SSR-based genetic diversity and population structure analysis of selected okra (Abelmoschus esculentus). Afr Sci. 2024;25:1-9.
  13. 13. Hazra S, Gorai S, Roy S, Bose S, Hazra P, Chattopadhyay A, et al. Isolation of yellow vein mosaic virus-resistant mutants of okra (Abelmoschus esculentus L.) through applied mutagenesis. Plant Breed. 2024;143:232-45. https://doi.org/10.1111/pbr.13151
  14. 14. Rathod V. Breeding of okra for resistance to yellow vein mosaic virus. Int J Plant Soil Sci. 2023;35:954-65. https://doi.org/10.9734/ijpss/2023/v35i203889
  15. 15. Nanthakumar S. Genetic divergence analysis in okra (Abelmoschus esculentus) using Mahalanobis D² statistics. J Hortic Sci. 2021;2:37-45.
  16. 16. Meena AR, Narolia RK, Yadav PK, Lata K, Meena S. Improvement in yield and quality of okra (Abelmoschus esculentus) through crop spacing, mulching and irrigation levels in arid regions. Indian J Agric Sci. 2024;94:270-75. https://doi.org/10.56093/ijas.v94i3.142770
  17. 17. Singh J, Nigam R. Importance of okra (Abelmoschus esculentus L.) and its proportion in the world as a nutritional vegetable. Int J Environ Clim Change. 2023;13:1694-99. https://doi.org/10.9734/ijecc/2023/v13i102825
  18. 18. Patel R, Singh V. Morphological diversity and YVMV tolerance in elite okra lines. J Hortic Res. 2024;12:33-47.
  19. 19. El-Gendy A, Ahmed E, Hassan M. Evaluation of okra genotypes for yield, quality and YVMV resistance. Sci Hortic. 2023;315:111-26.
  20. 20. Kalita MK, Dhawan P. Management of yellow vein mosaic and leaf curl diseases of okra by adjusting date of sowing and row to row spacing. Indian J Agric Sci. 2011;76:175-83.
  21. 21. Yadav SK. Assessment of genetic diversity in genotypes of okra (Abelmoschus esculentus (L.) Moench). [M.Sc. (Agri) thesis]. Pusa: Dr. Rajendra Prasad Central Agricultural University; 2020.
  22. 22. Nanthakumar S, Kuralarasu C, Gopikrishnan A. D² analysis for assessing genetic diversity in okra (Abelmoschus esculentus (L.) Moench). Electron J Plant Breed. 2021;12:1249-53. https://doi.org/10.37992/2021.1204.171
  23. 23. Tudu PP, Bahadur V, Kerketta LS, Luthra S. Study on heritability, correlation and genetic divergence in okra (Abelmoschus esculentus). Int J Curr Microbiol Appl Sci. 2021;10:365-68. https://doi.org/10.20546/ijcmas.2021.1006.038
  24. 24. Aminu D, Mohammed A, Ibrahim H. Genetic variability and correlation analysis in okra (Abelmoschus esculentus). Plant Genet Res J. 2023;21:55-63.
  25. 25. Yadav M, Chaudhary R, Kaur J. Heritability and genetic advance in okra. J Plant Breed Genet. 2024;12:210-20.
  26. 26. Sarkar S, Bose A, Roy P. Cluster analysis and genetic divergence in okra germplasm. Veg Sci. 2023;50:182-90.
  27. 27. Yusuf S, Ahmed L, Musa A. Multivariate analysis of genetic diversity in okra. J Agric Sci. 2022;14:301-09.
  28. 28. Premkumar R, Shreya C, Babu R. Genetic divergence studies in okra using Mahalanobis D² analysis. Indian J Agric Res. 2023;57:512-18.
  29. 29. Osekita OS, Adewale AB, Aderinola OA. Genetic divergence and clustering in okra using D² statistics. Int J Veg Sci. 2024;30:145-59.
  30. 30. Nwangburuka C, Ogunbayo A, Fawole I. Assessment of genetic diversity in okra using morphological and SSR markers. Afr Crop Sci J. 2023;31:221-34.
  31. 31. Chandra P, Verma A, Tripathi N. SSR-based diversity assessment in cultivated okra genotypes. Mol Plant Breed. 2024;15:45-59.
  32. 32. Ali SM, Khan N, Rauf S. Molecular characterization and diversity analysis in okra using SSR markers. J Crop Sci. 2023;15:112-22.
  33. 33. Chandramouli B, Shrihari D, Rao AD, Rao MP. Studies on genetic variability, heritability and genetic advance in okra (Abelmoschus esculentus (L.) Moench) genotypes. Plant Arch. 2016;16:679-82.
  34. 34. Chetana MP, Wankhade JD, Deshmukh. Genetic variability, heritability and genetic advance in okra (Abelmoschus esculentus (L.) Moench). Pharma Innov J. 2021;10:2687-90.
  35. 35. Komal J, Jethva AS, Zinzala SN, Sapovadiya MH, Vachhani JH. Study of variation among the genotypes of okra (Abelmoschus esculentus (L.) Moench). Pharma Innov J. 2022;11:3560-63.
  36. 36. Pampanna Y, Diwan JR, Patil MG, Ashok H. Assessment of genetic variability in okra (Abelmoschus esculentus (L.) Moench) genotypes. J Sci Res Rep. 2024;30:234-41. https://doi.org/10.9734/jsrr/2024/v30i82243
  37. 37. Srivastava M, Thakur V, Singh J. Comparative studies of different okra genotypes under Punjab's Doaba region. Int J Adv Biochem Res. 2024;8:672-6. https://doi.org/10.33545/26174693.2024.v8.i3h.831
  38. 38. Temam N, Mohamed W, Aklilu S. Agro-morphological characterization and evaluation of okra (Abelmoschus esculentus (L.) Moench) genotypes for yield and other variability components at Melkassa, Central Ethiopia. MOJ Ecol Environ Sci. 2020;5:80-87. https://doi.org/10.15406/mojes.2020.05.00179
  39. 39. Mishra B, Tiwari A, Pandey SK, Ramgiry M. DUS based agro-morphological characterization and genetic variability in okra (Abelmoschus esculentus (L.) Moench). Veg Sci. 2024;51:78-85. https://doi.org/10.61180/vegsci.2024.v51.i1.11
  40. 40. Bhatt GM. Multivariate analysis approach to selection of parents for hybridization aiming at yield improvement in self-pollinated crops. Aust J Agric Res. 1970;21:1-7. https://doi.org/10.1071/AR9700001
  41. 41. Rao CR. Advanced statistical methods in biometric research. New York: John Wiley and Sons; 1952. p. 351.
  42. 42. Pattan F, Rajan REB, Kumar CPS, Ruban JS. Multivariate analysis for assessing genetic diversity in different genotypes of okra (Abelmoschus esculentus (L.) Moench) for varietal improvement. J Appl Nat Sci. 2023;15:1006-11. https://doi.org/10.31018/jans.v15i3.4693
  43. 43. Yadav SK, Kumar U, Prasad K, Maurya S, Saroj N. Genetic divergence for different yield attributing traits in okra (Abelmoschus esculentus (L.) Moench) genotypes grown in Himalayan foothills region. J Agric Sci Technol. 2024;26:847-60.
  44. 44. Ravishankar KV, Muthaiah G, Mottaiyan P, Gundale SK. Identification of novel microsatellite markers in okra (Abelmoschus esculentus (L.) Moench) through next-generation sequencing and their utilization in genetic relatedness and cross-species transferability studies. Int J Life Sci. 2018;97:39-47. https://doi.org/10.1007/s12041-018-0893-0
  45. 45. Adewusi OF. Genetic diversity in okra genotypes revealed by simple sequence repeats markers. Int J Agric Technol. 2023;3:1-5. https://doi.org/10.33425/2770-2928.1020
  46. 46. Sood T, Sood S, Sood VK, Badiyal A, Kapoor S, Sood V, et al. Characterisation of bell pepper (Capsicum annuum L. var. grossum Sendt.) accessions for genetic diversity and population structure based on agro-morphological and microsatellite markers. Sci Hortic. 2023;321:112308. https://doi.org/10.1016/j.scienta.2023.112308
  47. 47. Hamdan YA, Hawamda AI, Basheer-Salimia R, Salman M. Genetic diversity assessment of Palestinian okra landraces (Abelmoschus esculentus L.) through RAPD marker. Genet Resour Crop Evol. 2024;71:88-92. https://doi.org/10.1007/s10722-024-01859-x
  48. 48. Kumar S, Parekh MJ, Patel CB, Patel SK, Fougat RS, Patel BR, et al. Assessment of genetic diversity among okra genotypes using SSR markers. J Plant Biochem Biotechnol. 2017;26:172-78. https://doi.org/10.1007/s13562-016-0378-2
  49. 49. El-Sherbeny GAR, Khaled AGA, Obiadalla-Ali HA, Ahmed AYM. ISSR markers linked to agronomic traits in okra. Int J Mod Agric. 2018;7:1-7.
  50. 50. Ramakrishnan AP, Meyer SE, Coleman CE, Stevens MR, Fairbanks DJ, Waters J. Correlation between molecular markers and adaptively significant genetic variation in Bromus tectorum (Poaceae), an inbreeding annual grass. Am J Bot. 2004;91:797-803. https://doi.org/10.3732/ajb.91.6.797

Downloads

Download data is not yet available.