Review Articles
Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III
Comprehensive review on growth regulating factor (GRF): A transcriptional factor in rice (Oryza sativa)
Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, India
Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore 641 003, India
Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, India
Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, India
Department of Seed Science and Technology, Tamil Nadu Agricultural University, Coimbatore 641 003, India
Department of Rice, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641 003, India
Abstract
Rice is the staple food for more than half of the world’s population. Production is a major consideration for a future-demanding, growing population. Plant growth is mediated by several gene expressions. Growth regulating factor (GRF) is a transcription factor (TF) family member, which includes 12 GRF members in rice. Evolutionary analysis of GRF showed that GRF members were found in all land plants, participate in growth, development, metabolism and are involved in defense mechanisms. In rice, 12 members of GRF are expressed in different tissues at different time intervals and regulate leaf size, stem elongation, floral development, grain size improvement and resistance against biotic and abiotic stresses. GRF has two domains, QLQ (glutamine-leucine-glutamine) and WRC (WRKY rich cysteine). GRF TF interacts with a co-activator called GRF-interacting factor (GIF) and GIF harbors an SNF (sucrose nonfermenting 2) domain. This GRF-GIF duo, along with miRNA (micro RNA), regulates downstream target genes.
miR396 specifically targets GRFs and functions in the repression of specific GRFs and is upregulated during stress conditions. This complex can be regulated by hormones such as gibberellic acid, brassinosteroid, which have a tremendous effect on the expression of GRF genes under normal and stress conditions. Some of the members are novelly present in some varieties and exhibit their expression, like GS2/GL2 (Grain Size2/ Grain Length2) allele, which regulates grain size. New germplasms harboring GRF function can be created by transgenic approaches, RNAi (RNA interference) methodologies, target mimic approaches and breeding programs. Understanding their structure and function, as well as their regulatory mechanisms across different tissues, can be utilized to target desirable agronomic traits with significant economic value.
References
- 1. Mitsis T, Efthimiadou A, Bacopoulou F, Vlachakis D, Chrousos GP, Eliopoulos E. Transcription factors and evolution: an integral part of gene expression. World Acad Sci J. 2020;2(1):3–8. https://doi.org/10.3892/wasj.2020.32
- 2. Meshi T, Iwabuchi M. Plant transcription factors. Plant Cell Physiol. 1995;36(8):1405–20. https://doi.org/10.1093/oxfordjournals.pcp.a078903
- 3. Gao G, Zhong Y, Guo A, Zhu Q, Tang W, Zheng W, et al. DRTF: a database of rice transcription factors. Bioinformatics. 2006;22(10):1286–7. https://doi.org/10.1093/bioinformatics/btl107
- 4. van der Knaap E, Kim JH, Kende H. A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth. Plant Physiol. 2000;122(3):695–704. https://doi.org/10.1104/pp.122.3.695
- 5. Fonini LS, Lazzarotto F, Barros PM, Cabreira-Cagliari C, Martins MAB, Saibo NJ, et al. Molecular evolution and diversification of the GRF transcription factor family. Genet Mol Biol. 2020;43(3):20200080. https://doi.org/10.1590/1678-4685-GMB-2020-0080
- 6. Jin J, Zhang H, Kong L, Gao G, Luo J. PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res. 2014;42(D1):D1182–7. https://doi.org/10.1093/nar/gkt1016
- 7. Chen F, Yang Y, Luo X, Zhou W, Dai Y, Zheng C, et al. Genome-wide identification of GRF transcription factors in soybean and expression analysis of GmGRF family under shade stress. BMC Plant Biol. 2019;19(1):269. https://doi.org/10.1186/s12870-019-1861-4
- 8. Choi D, Kim JH, Kende H. Whole genome analysis of the OsGRF gene family encoding plant-specific putative transcription activators in Oryza sativa L. Plant Cell Physiol. 2004;45(7):897–904. https://doi.org/10.1093/pcp/pch098
- 9. Wang W, Cheng M, Wei X, Wang R, Fan F, Wang Z, et al. Comprehensive evolutionary analysis of growth-regulating factor gene family revealing the potential molecular basis under multiple hormonal stress in Gramineae crops. Front Plant Sci. 2023;14:1174955. https://doi.org/10.3389/fpls.2023.1174955
- 10. Sahoo RK, Jeughale KP, Sarkar S, Selvaraj S, Singh NR, Swain N, et al. Growing conditions and varietal ecologies differently regulates the growth-regulating-factor (GRFs) gene family in rice. Iran J Biotechnol. 2024;22(1):e3697. https://doi.org/10.30498/ijb.2024.394984.3697
- 11. Vercruyssen L, Tognetti VB, Gonzalez N, Van Dingenen J, De Milde L, Bielach A, et al. Growth regulating factor stimulates Arabidopsis chloroplast division, photosynthesis and leaf longevity. Plant Physiol. 2015;167(3):817–32. https://doi.org/10.1104/pp.114.256180
- 12. Kim JH, Tsukaya H. Regulation of plant growth and development by the growth regulating factor and GRF– interacting factor duo. J Exp Bot. 2015;66(20):6093–102. https://doi.org/10.1093/jxb/erv349
- 13. Cheng Z, Wen S, Wu Y, Shang L, Wu L, Lyu D, et al. Comparatively evolution and expression analysis of GRF transcription factor genes in seven plant species. Plants. 2023;12(15):2790. https://doi.org/10.3390/plants12152790
- 14. Osnato M, Stile MR, Wang Y, Meynard D, Curiale S, Guiderdoni E, et al. Cross talk between the KNOX and ethylene pathways is mediated by intron-binding transcription factors in barley. Plant Physiol. 2010;154(4):1616–32. https://doi.org/10.1104/pp.110.161984
- 15. Kim JS, Mizoi J, Kidokoro S, Maruyama K, Nakajima J, Nakashima K, et al. Arabidopsis growth regulating factor7 functions as a transcriptional repressor of abscisic acid– and osmotic stress–responsive genes, including DREB2A. Plant Cell. 2012;24(8):3393–405. https://doi.org/10.1105/tpc.112.100933
- 16. Kuijt SJ, Greco R, Agalou A, Shao J, Hoen CC, Övernäs E, et al. Interaction between the growth regulating factor and Knotted1-like-Homebox families of transcription factors. Plant Physiol. 2014;164(4):1952–66. https://doi.org/10.1104/pp.113.222836
- 17. He Z, Zeng J, Ren Y, Chen D, Li W, Gao F, et al. OsGIF1 positively regulates the sizes of stems, leaves and grains in rice. Front Plant Sci. 2017;8:1730. https://doi.org/10.3389/fpls.2017.01730
- 18. Lee BH, Ko JH, Lee S, Lee Y, Pak JH, Kim JH. The Arabidopsis GRF interacting factor gene family performs an overlapping function in determining organ size as well as multiple developmental properties. Plant Physiol. 2009;151(2):655–68. https://doi.org/10.1104/pp.109.141838
- 19. Kim JH, Choi D, Kende H. The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Plant J. 2003;36(1):94–104. https://doi.org/10.1046/j.1365-313X.2003.01862.x
- 20. Kim JH, Kende H. A transcriptional coactivator, AtGIF1, is involved in regulating leaf growth and morphology in Arabidopsis. Proc Natl Acad Sci. 2004;101(36):13374–9. https://doi.org/10.1073/pnas.0405450101
- 21. Omidbakhshfard MA, Proost S, Fujikura U, Mueller-Roeber B. Growth regulating factors (GRFs): a small transcription factor family with important functions in plant biology. Mol Plant. 2015;8(7):998–1010. https://doi.org/10.1016/j.molp.2015.01.013
- 22. Zhang DF, Li B, Jia GQ, Zhang TF, Dai JR, Li JS, et al. Isolation and characterization of genes encoding GRF transcription factors and GIF transcriptional coactivators in Zea mays L. Plant Sci. 2008;175(6):809–17. https://doi.org/10.1016/j.plantsci.2008.08.002
- 23. Horiguchi G, Kim GT, Tsukaya H. The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana. Plant J. 2005;43(1):68–78. https://doi.org/10.1111/j.1365-313X.2005.02429.x
- 24. Liu H, Guo S, Xu Y, Li C, Zhang Z, Zhang D, et al. OsmiR396d-regulated OsGRFs function in floral organogenesis in rice through binding to their targets OsJMJ706 and OsCR4. Plant Physiol. 2014;165(1):160–74. https://doi.org/10.1104/pp.114.235564
- 25. Nosaki S, Ohtsuka M. The DNA binding of plant-specific growth regulating factor transcription factors is stabilized by GRF-interacting factor coactivators. Biosci Biotechnol Biochem. 2025;89(5):761–8. https://doi.org/10.1093/bbb/zbaf016
- 26. Morris JL, Puttick MN, Clark JW, Edwards D, Kenrick P, Pressel S, et al. The timescale of early land plant evolution. Proc Natl Acad Sci USA. 2018;115(10):E2274-83. https://doi.org/10.1073/pnas.1719588115
- 27. Chen X, Zhang J, Wang S, Cai H, Yang M, Dong Y. Genome-wide molecular evolution analysis of the GRF and GIF gene families in Plantae (Archaeplastida). BMC Genomics. 2024;25(1):74. https://doi.org/10.1186/s12864-024-10006-w
- 28. Zan T, Zhang L, Xie T, Li L. Genome-wide identification and analysis of the growth-regulating factor (GRF) gene family and GRF-interacting factor family in Triticum aestivum L. Biochem Genet. 2020;58(5):705-24. https://doi.org/10.1007/s10528-020-09969-8
- 29. Lu Y, Meng Y, Zeng J, Luo Y, Feng Z, Bian L, et al. Coordination between growth regulating factor1 and GRF– interacting factor1 plays a key role in regulating leaf growth in rice. BMC Plant Biol. 2020;20(1):200. https://doi.org/10.1186/s12870-020-02417-0
- 30. Gao F, Wang K, Liu Y, Chen Y, Chen P, Shi Z, et al. Blocking miR396 increases rice yield by shaping inflorescence architecture. Nat Plants. 2015;2(1):1-9. https://doi.org/10.1038/nplants.2015.196
- 31. Baulcombe D. RNA silencing in plants. Nature. 2004;431(7006):356-63. https://doi.org/10.1038/nplants.2015.196
- 32. Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol. 2006;57(1):19-53. https://doi.org/10.1146/annurev.arplant.57.032905.105218
- 33. Voinnet O. Origin, biogenesis and activity of plant microRNAs. Cell. 2009;136(4):669-87. https://doi.org/10.1016/j.cell.2009.01.046
- 34. Rani V, Sengar RS. Biogenesis and mechanisms of microRNA mediated gene regulation. Biotechnol Bioeng. 2022;119(3):685-92. https://doi.org/10.1002/bit.28029
- 35. German MA, Pillay M, Jeong DH, Hetawal A, Luo S, Janardhanan P, et al. Global identification of microRNA–target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol. 2008;26(8):941-6. https://doi.org/10.1038/nbt1417
- 36. Lu Y, Zeng J, Liu Q. The rice miR396-GRF-GIF-SWI/SNF module: a player in GA signaling. Front Plant Sci. 2022;12:786641. https://doi.org/10.3389/fpls.2021.786641
- 37. Li YF, Zheng Y, Addo-Quaye C, Zhang L, Saini A, Jagadeeswaran G, et al. Transcriptome-wide identification of microRNA targets in rice. Plant J. 2010;62(5):742-59. https://doi.org/10.1111/j.1365-313X.2010.04187.x
- 38. Sunkar R, Girke T, Jain PK, Zhu JK. Cloning and characterization of microRNAs from rice. Plant Cell. 2005;17(5):1397-411. https://doi.org/10.1105/tpc.105.031682
- 39. Luo X, Zheng J, Huang R, Huang Y, Wang H, Jiang L, et al. Phytohormones signaling and crosstalk regulating leaf angle in rice. Plant Cell Rep. 2016;35(12):2423-33. https://doi.org/10.1007/s00299-016-2052-5
- 40. Duan P, Ni S, Wang J, Zhang B, Xu R, Wang Y, et al. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat Plants. 2015;2(1):1-5. https://doi.org/10.1038/nplants.2015.203
- 41. Che R, Tong H, Shi B, Liu Y, Fang S, Liu D, et al. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat Plants. 2015;2(1):1-8. https://doi.org/10.1038/nplants.2015.195
- 42. Pu CX, Ma YM, Wang WJ, Zhang YC, Jiao XW, Hu YH, et al. Crinkly4 receptor-like kinase is required to maintain the interlocking of the palea and lemma and fertility in rice, by promoting epidermal cell differentiation. Plant J. 2012;70(6):940-53. https://doi.org/10.1111/j.1365-313X.2012.04925.x
- 43. Jones-Rhoades MW, Bartel DP. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell. 2004;14(6):787-99. https://doi.org/10.1016/j.molcel.2004.05.027
- 44. Sunkar R, Jagadeeswaran G. In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol. 2008;8(1):37. https://doi.org/10.1186/1471-2229-8-37
- 45. Debernardi JM, Rodriguez RE, Mecchia MA, Palatnik JF. Functional specialization of the plant miR396 regulatory network through distinct microRNA–target interactions. PLoS Genet. 2012;8(1):e1002419. https://doi.org/10.1371/journal.pgen.1002419
- 46. Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, et al. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J. 2004;23(16):3356-64. https://doi.org/10.1038/sj.emboj.7600340
- 47. Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D. Specific effects of microRNAs on the plant transcriptome. Dev Cell. 2005;8(4):517-27. https://doi.org/10.1016/j.devcel.2005.01.018
- 48. Palatnik JF, Wollmann H, Schommer C, Schwab R, Boisbouvier J, Rodriguez R, et al. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Dev Cell. 2007;13(1):115-25. https://doi.org/10.1016/j.devcel.2007.04.012
- 49. Xu R, An J, Song J, Yan T, Li J, Zhao X, et al. OsGRF1 and OsGRF2 play unequal redundant roles in regulating leaf vascular bundle formation. J Exp Bot. 2025;76(14):4055-70. https://doi.org/10.1093/jxb/eraf193
- 50. Luo AD, Liu L, Tang ZS, Bai XQ, Cao SY, Chu CC. Down-regulation of OsGRF1 gene in rice rhd1 mutant results in reduced heading date. J Integr Plant Biol. 2005;47(6):745-52. https://doi.org/10.1111/j.1744-7909.2005.00071.x
- 51. Jathar V, Saini K, Chauhan A, Rani R, Ichihashi Y, Ranjan A. Spatial control of cell division by GA-OsGRF7/8 module in a leaf explaining the leaf length variation between cultivated and wild rice. New Phytol. 2022;234(3):867-83. https://doi.org/10.1111/nph.18029
- 52. Pu CuiXia PC, Ma Yun MY, Wang Jiao WJ, Zhang YongCun ZY, Jiao XueWen JX, Hu YuHong HY, et al. Crinkly 4 receptor-like kinase is required to maintain the interlocking of the palea and lemma and fertility in rice, by promoting epidermal cell differentiation. Plant J. 2012;70(6):940-53. https://doi.org/10.1111/j.1365-313X.2012.04925.x
- 53. Sun Q, Zhou DX. Rice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development. Proc Natl Acad Sci. 2008;105(36):13679-84. https://doi.org/10.1073/pnas.0805901105
- 54. Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, et al. A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant. 2015;8(10):1455-65. https://doi.org/10.1016/j.molp.2015.07.002
- 55. Sun P, Zhang W, Wang Y, He Q, Shu F, Liu H, et al. OsGRF4 controls grain shape, panicle length and seed shattering in rice. J Integr Plant Biol. 2016;58(10):836-47. https://doi.org/10.1111/jipb.12473
- 56. Chen X, Jiang L, Zheng J, Chen F, Wang T, Wang M, et al. A missense mutation in large grain size 1 increases grain size and enhances cold tolerance in rice. J Exp Bot. 2019;70(15):3851-66.
- 57. Li S, Tian Y, Wu K, Ye Y, Yu J, Zhang J, et al. Modulating plant growth–metabolism coordination for sustainable agriculture. Nature. 2018;560(7720):595-600. https://doi.org/10.1038/s41586-018-0415-5
- 58. Tang Y, Liu H, Guo S, Wang B, Li Z, Chong K, et al. OsmiR396d affects gibberellin and brassinosteroid signaling to regulate plant architecture in rice. Plant Physiol. 2018;176(1):946-59. https://doi.org/10.1104/pp.17.00964
- 59. Sun H, Guo X, Zhu X, Gu P, Zhang W, Tao W, et al. Strigolactone and gibberellin signaling coordinately regulate metabolic adaptations to changes in nitrogen availability in rice. Mol Plant. 2023;16(3):588-98. https://doi.org/10.1016/j.molp.2023.01.009
- 60. Zhang J, Zhou Z, Bai J, Tao X, Wang L, Zhang H, et al. Disruption of MIR396e and MIR396f improves rice yield under nitrogen-deficient conditions. Natl Sci Rev. 2020;7(1):102-12. https://doi.org/10.1093/nsr/nwz142
- 61. Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, et al. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J. 2014;77(3):367-79. https://doi.org/10.1111/tpj.12388
- 62. Onkokesung N, Reichelt M, van Doorn A, Schuurink RC, van Loon JJ, Dicke M. Modulation of flavonoid metabolites in Arabidopsis thaliana through overexpression of the MYB75 transcription factor: role ofkaempferol-3,7-dirhamnoside in resistance to the specialist insect herbivore Pieris brassicae. J Exp Bot. 2014;65(8):2203-17. https://doi.org/10.1093/jxb/eru096
- 63. Dai Z, Tan J, Zhou C, Yang X, Yang F, Zhang S, et al. The OsmiR396–OsGRF8–OsF3H-flavonoid pathway mediates resistance to the brown planthopper in rice (Oryza sativa). Plant Biotechnol J. 2019;17(8):1657-69. https://doi.org/10.1111/pbi.13091
- 64. Chandran V, Wang H, Gao F, Cao XL, Chen YP, Li GB, et al. miR396- OsGRFs module balances growth and rice blast disease-resistance. Front Plant Sci. 2019;9:1999. https://doi.org/10.3389/fpls.2018.01999
- 65. Shen Q, Xie Y, Qiu X, Yu J. The era of cultivating smart rice with high light efficiency and heat tolerance has come of age. Front Plant Sci. 2022;13:1021203. https://doi.org/10.3389/fpls.2022.1021203
- 66. Tang Y, Gao CC, Gao Y, Yang Y, Shi B, Yu JL, et al. OsNSUN2-mediated 5 -methylcytosine mRNA modification enhances rice adaptation to high temperature. Dev Cell. 2020;53(3):272-86. https://doi.org/10.1016/j.devcel.2020.03.009
- 67. Mo Y, Li G, Liu L, Zhang Y, Li J, Yang M, et al. OsGRF4AA compromises heat tolerance of developing pollen grains in rice. Front Plant Sci. 2023;14:1121852. https://doi.org/10.3389/fpls.2023.1121852
- 68. Chen TH, Murata N. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol. 2002;5(3):250-7. https://doi.org/10.1016/S1369-5266(02)00255-8
- 69. Oliver AE, Hincha DK, Tsvetkova NM, Vigh L, Crowe JH. The effect of arbutin on membrane integrity during drying is mediated by stabilization of the lamellar phase in the presence of nonbilayer forming lipids. Chem Phys Lipids. 2001;111(1):37-57. https://doi.org/10.1016/S0009-3084(01)00141-4
- 70. Chen Y, Dan Z, Li S. Growth regulating factor 7-mediated arbutin metabolism enhances rice salt tolerance. Plant Cell. 2024;36(8):2834-50. https://doi.org/10.1093/plcell/koae140
- 71. Kim Y, Takahashi S, Miyao M. Relationship between reduction in rice (Nipponbare) leaf blade size under elevated CO2 and miR396–GRF module. Plant Signal Behav. 2022;17(1):2041280. https://doi.org/10.1080/15592324.2022.2041280
Downloads
Download data is not yet available.