Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

Integrating host plant resistance and molecular breeding to combat shoot fly in sorghum: A review

DOI
https://doi.org/10.14719/pst.11607
Submitted
3 September 2025
Published
06-11-2025

Abstract

Sorghum is one of the major millet crops globally and is severely affected by various pests and diseases, with the shoot fly (Atherigona soccata) being one of the most damaging pests to sorghum production worldwide. This pest primarily targets sorghum seedlings, causing yield losses of up to 90 %. Despite adopting various management practices, host plant resistance remains the most effective, economical and environment friendly method for controlling this pest. Conventional breeding strategies, which rely exclusively on phenotypic selection, have
encountered significant challenges in developing cultivars with broad-spectrum resistance. In recent decades, significant efforts have been made to address these limitations by leveraging advancements in molecular breeding approaches, including Quantitative Trait Loci (QTL) mapping and Marker-Assisted Selection (MAS). These approaches have led to the identification of several resistant genotypes, QTLs and genes associated with shoot fly resistance in sorghum. However, progress in improving sorghum resistance to the shoot fly through molecular breeding remains limited. This review discusses the biology and impact of the shoot fly on sorghum, evaluates progress and constraints in molecular breeding for resistance, identifies existing research gaps and proposes future directions to enhance efforts in combating shoot fly resistance in sorghum.

References

  1. 1. Bakari H, Djomdi RZF, Roger DD, Cedric D, Guillaume P, Dubessay P, et al. Sorghum bicolor (L. Moench) and its main parts (by-products) as promising sustainable sources of value-added ingredients. Waste Biomass Valorization. 2023;14(4):1023-44. https://doi.org/10.1007/s12649-022-01992-7
  2. 2. Mwamahonje A, Mdindikasi Z, Mchau D, Mwenda E, Sanga D, Garcia-Oliveira AL, et al. Advances in sorghum improvement for climate resilience in the global arid and semi-arid tropics: a review. Agronomy. 2024;14(12):3025. https://doi.org/10.3390/agronomy14123025
  3. 3. Mukherjee A, Maheshwari U, Sharma V, Sharma A, Kumar S. Functional insight into multi-omics-based interventions for climatic resilience in sorghum (Sorghum bicolor): a nutritionally rich cereal crop. Planta. 2024;259(4):91. https://doi.org/10.1007/s00425-024-04365-7
  4. 4. Singh B, Kumar N, Kumar H. Seasonal incidence and management of sorghum shoot fly, Atherigona soccata Rondani - a review. Forage Res. 2017;42:218-24.
  5. 5. Hawkins NJ, Bass C, Dixon A, Neve P. The evolutionary origins of pesticide resistance. Biol Rev. 2019;94(1):135-55. https://doi.org/10.1111/brv.12440
  6. 6. Patil S, Bagde A. Physio–chemical resistance mechanism of sorghum genotypes against shoot fly (Atherigona soccata Rondani). Int J Curr Microbiol Appl Sci. 2017;6(9):2742-6. https://doi.org/10.20546/ijcmas.2017.609.337
  7. 7. Zarei M, Amirkolaei AK, Trushenski JT, Sealey WM, Schwarz MH, Ovissipour R. Sorghum as a potential valuable aquafeed ingredient: nutritional quality and digestibility. Agriculture. 2022;12(5):669. https://doi.org/10.3390/agriculture12050669
  8. 8. Sharma HC, Bhagwat VR, Munghate RS, Sharma SP, Daware DG, Pawar DB, et al. Stability of resistance to sorghum shoot fly, Atherigona soccata. Field Crops Res. 2015;178:34-41. https://doi.org/10.1016/j.fcr.2015.03.015
  9. 9. Mundt CC. Pyramiding for resistance durability: theory and practice. Phytopathology. 2018;108(7):792-802. https://doi.org/10.1094/PHYTO-12-17-0426-RVW
  10. 10. Apotikar DB, Venkateswarlu D, Ghorade RB, Wadaskar RM, Patil JV, Kulwal PL. Mapping of shoot fly tolerance loci in sorghum using SSR markers. J Genet. 2011;90(1):59-66. https://doi.org/10.1007/s12041-011-0046-1
  11. 11. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, et al. The Sorghum bicolor genome and the diversification of grasses. Nature. 2009;457(7229):551-6. https://doi.org/10.1038/nature07723
  12. 12. Satish K, Srinivas G, Madhusudhana R, Padmaja PG, Nagaraja Reddy R, Murali Mohan S, et al. Identification of quantitative trait loci for resistance to shoot fly in sorghum (Sorghum bicolor (L.) Moench). Theor Appl Genet. 2009;119:1425-39. https://doi.org/10.1007/ s00122-009-1145-8
  13. 13. Satish K, Madhusudhana R, Padmaja PG, Seetharama N, Patil JV. Development, genetic mapping of candidate gene-based markers and their significant association with the shoot fly resistance quantitative trait loci in sorghum (Sorghum bicolor (L.) Moench). Mol Breed. 2012;30:1573-91. https://doi.org/10.1007/s11032-012-9740-9
  14. 14. Ballard E, Rao YR, A preliminary note on the life-history of certain Anthomyiad flies, Atherigona spp. and Acritochaeta excisa, Thomson. Report of the Proceedings of the 5th Entomological Meeting at Pusa, 1923; 1924.
  15. 15. Davies JC, Reddy KVS. Observations on oviposition of sorghum shoot fly, Atherigona soccata Rond: (Diptera: Muscidae). Int J Trop Insect Sci. 1981;6(11):1-12. https://doi.org/10.1017/S1742758400002125
  16. 16. Davies JC, Reddy KVS. Shoot fly species and their graminaceous hosts in Andhra Pradesh, India. Int J Trop Insect Sci. 1981;2(1-2):33-7. https://doi.org/10.1080/09670878009414408
  17. 17. Reddy KVS, Davies JC. Pests of sorghum and pearl millet and their parasites and predators, recorded at ICRISAT Center, India up to August 1979. 1979.
  18. 18. Granados YR. The role of wild hosts on the population dynamics of the sorghum shootfly in Thailand. Control of Sorghum Shootfly. 1972:112-8.
  19. 19. Meksongsee B, Chawanapong M. Sorghum insect pests in Southeast Asia. Proceedings of the International Sorghum Entomology Workshop; 1984.
  20. 20. Reddy KVS, Omolo EO. Sorghum insect pest situation in eastern Africa. International Sorghum Entomology Workshop; 1984.
  21. 21. Nwanze KF. Sorghum insect pests in West Africa. Proceedings of the International Sorghum Entomology Workshop; 1984.
  22. 22. Sherwill Byrne M, Van den Berg JT. Shoot fly species on sorghum in the Mpumalanga subtropics of South Africa: relative abundance and infestation levels. Afr Plant Prot. 1999;5(1):31-5.
  23. 23. Balikai RA. Seasonal incidence of sorghum shoot fly in Northern Dry Zone of Karnataka. Karnataka J Agric Sci. 2000;13(2):457-8.
  24. 24. Taneja SL, Reddy KVS, Leuschner K. Monitoring of shoot fly population in sorghum. Indian J Plant Prot. 1986;14(2):29-36.
  25. 25. Raina AK. Fecundity and oviposition behaviour of the sorghum shootfly, Atherigona soccata. Entomol Exp Appl. 1982;31(4):381-5. https://doi.org/10.1111/j.1570-7458.1982.tb03164.x
  26. 26. Raina AK. Daily rhythms in the sorghum shootfly, Atherigona soccata: oviposition, egg-hatch and adult eclosion. Physiol Entomol. 1982;7(1):65–70. https://doi.org/10.1111/j.1365-3032.1982.tb00667.x
  27. 27. Sharma HC, Nwanze KF. Insect pests of sorghum: biology, extent of losses and economic thresholds. Plant resistance to insects in sorghum; 1997. p. 9–23.
  28. 28. Singh S, Jotwani M. Mechanism of resistance in sorghum to shootfly. III. Biochemical basis of resistance. Indian J Entomol. 1981;42(4):551-66.
  29. 29. Nwanze KF, Nwilene FE, Reddy YVR. Evidence of shoot fly Atherigona soccata Rondani (Dipt., Muscidae) oviposition response to sorghum seedling volatiles. J Appl Entomol. 1998;122(1–5):591–4.
  30. 30. Kundu GG, Kishore P. Biology of the sorghum shoot fly, Atherigona varia soccata Rond. (Anthomyiidae: Diptera). Indian J Entomol. 1970;32(3):215–57.
  31. 31. Dhillon M, Sharma H, Singh R, Naresh J. Mechanisms of resistance to shoot fly, Atherigona soccata in sorghum. Euphytica. 2005;144:301–12. https://doi.org/10.1007/s10681-005-7400-4
  32. 32. Pawar V, Jadhav G, Shirshikar S. Compatibility of Oncol 50 SP with different fungicides on sorghum (CS-3541) against shoot fly (Atherigona soccata Rondani). Pesticides. 1984:9-10.
  33. 33. Rai S, Jotwani M, Jha D. Economic injury level of shootfly, Atherigona soccata (Rondani) on sorghum. 1978. Indian J Entomol. 1978:40(2):126-33.
  34. 34. Ponnaiya B. Studies in the genus Sorghum: II. The cause of resistance in Sorghum to the insect pest Atherigona indica M. Journal of the Madras University. 1951;21:203-17.
  35. 35. Singh S, Jotwani M, Rana B, Rao N. Stability of host-plant resistance to sorghum shootfly, Atherigona soccata (Rondani). Indian J Entomol. 1978;40(4):376-83.
  36. 36. Taneja SL, Leuschner K. Resistance screening and mechanisms of resistance in sorghum to shoot fly. Proceedings of the international sorghum entomology workshop; 1984.
  37. 37. Mote U, Shirole S, Bapat D. Screening of local Kharif varieties of sorghum for resistance to shootfly. Journal of Maharashtra Agricultural Universities. 1981;6(2):165-6.
  38. 38. Bapat D, Mote U. Upgrading the resistance level of derivatives from Indian × Indian crosses of sorghum against shootfly. Journal of the Maharashtra Agricultural Universities. 1982;7(2):170-3.
  39. 39. Salunkhe G, Gandhale D, Murti T, Naik L. Field screening of sorghum lines for resistance of shootfly. Journal of Maharashtra Agricultural Universities. 1982;7(3):270.
  40. 40. Sharma HC, Taneja SL, Rao NK, Rao KEP. Evaluation of sorghum germplasm for resistance to insect pests. ICRISAT. 2003.
  41. 41. Aruna C, Padmaja P. Evaluation of genetic potential of shoot fly resistant sources in sorghum (Sorghum bicolor (L.) Moench). J Agric Sci. 2009;147(1):71–80. https://doi.org/10.1017/S0021859608008277
  42. 42. Kumar A, Reddy BVS, Sharma HC, Ramaiah B. Shoot fly (Atherigona soccata) resistance in improved grain sorghum hybrids. J SAT Agric Res. 2008;6:1–4.
  43. 43. Douglas AE. Strategies for enhanced crop resistance to insect pests. Annu Rev Plant Biol. 2018;69:637–60. https://doi.org/10.1146/annurev-arplant-042817-040248
  44. 44. Kamala V, Sharma H, Rao DM, Varaprasad K, Bramel P. Wild relatives of sorghum as sources of resistance to sorghum shoot fly, Atherigona soccata. Plant Breed. 2009;128(2):137–42. https://doi.org/10.1111/j.1439-0523.2008.01585.x
  45. 45. Mookiah S, Sivasubramaniam B, Thangaraj T, Govindaraj S. Host plant resistance. Molecular approaches for sustainable insect pest management. Singapore: Springer; 2022. p. 1–56. https://doi.org/10.1007/978-981-16-3591-5_1
  46. 46. Rasmann S, Agrawal AA. Plant defense against herbivory: progress in identifying synergism, redundancy and antagonism between resistance traits. Curr Opin Plant Biol. 2009;12(4):473–8. https://doi.org/10.1016/j.pbi.2009.05.005
  47. 47. Leuschner K, Taneja S, Sharma H. The role of host-plant resistance in pest management in sorghum in India. Int J Trop Insect Sci. 1985;6(3):453–60.
  48. 48. Kamatar M, Salimath P. Morphological traits of sorghum associated with resistance to shootfly, Atherigona soccata Rondani. Indian J Plant Prot. 2003;31(1):73–7.
  49. 49. Tarumoto I. Glossiness of leaf blades in sorghum (Sorghum bicolor L. Moench); its visual and ultrastructural studies. Jpn Agric Res Q. 2005;39(3):153–60.
  50. 50. Kumar CS, Sharma H, Narasu ML, Pampapathy G. Mechanisms and diversity of resistance to shoot fly, Atherigona soccata in Sorghum bicolor. Indian J Plant Prot. 2008;36(2):249–56.
  51. 51. Chamarthi S, Sharma H, Sahrawat K, Narasu L, Dhillon M. Physicochemical mechanisms of resistance to shoot fly, Atherigona soccata in sorghum, Sorghum bicolor. J Appl Entomol. 2011;135(6):446–55. https://doi.org/10.1111/j.1439-0418.2010.01564.x
  52. 52. Aruna C, Bhagwat V, Madhusudhana R, Sharma V, Hussain T, Ghorade R, et al. Identification and validation of genomic regions that affect shoot fly resistance in sorghum (Sorghum bicolor [L.] Moench). Theor Appl Genet. 2011;122:1617–30. https:// doi.org/10.1007/s00122-011-1559-y
  53. 53. Maiti R, Bidinger F. A simple approach to the identification of shootfly tolerance in sorghum. Indian J Plant Prot. 1979;7(2):135–40.
  54. 54. Riyazaddin Mohammed RM, Are A, Munghate R, Ramaiah Bhavanasi RB, Polavarapu K, Sharma H. Inheritance of resistance to sorghum shoot fly, Atherigona soccata in sorghum, Sorghum bicolor (L.) Moench. Front Plant Sci. 2016;7:543. https://doi.org/10.3389/fpls.2016.00543
  55. 55. Salama EAA, Kumaravadivel N, Mohankumar S, Muthukrishnan N. Correlation study of traits associated with shoot fly resistance in recombinant inbred lines (RILs) population of sorghum (Sorghum bicolor [L.] Moench). Electron J Plant Breed. 2020;11(1):110–5. https://doi.org/10.37992/2020.1101.019
  56. 56. Wiseman B. Types and mechanisms of host plant resistance to insect attack. Int J Trop Insect Sci. 1985;6(3):239–42. https://doi.org/10.1017/S1742758400004483
  57. 57. Patel HV, Kalaria RK, Patel RM, Bhanderi GR. Biochemical changes associated in different sorghum genotypes against shoot fly, Atherigona soccata (Rondani) resistant. Trends Biosci. 2015;8(11):2867–71. https://doi.org/10.1007/s00709-020-01554-5
  58. 58. Kumari A, Goyal M, Kumar R, Sohu RS. Morphophysiological and biochemical attributes influence intra-genotypic preference of shoot fly (Atherigona soccata [Rondani]) among sorghum genotypes. Protoplasma. 2021;258:87–102.
  59. 59. Paudyal S, Armstrong JS, Giles KL, Hoback W, Aiken R, Payton ME. Differential responses of sorghum genotypes to sugarcane aphid feeding. Planta. 2020;252:1–9. https://doi.org/10.1007/s00425-020-03419-w
  60. 60. Manivannan A, Kanjana D, Dharajothi B, Meena B. Evaluation of resistance in cotton genotypes against leafhoppers Amrasca biguttula biguttula (Ishida) (Homoptera: Cicadellidae). Int J Trop Insect Sci. 2021;41:2409–20. https://doi.org/10.1007/s42690-020-00416-0
  61. 61. Kerchev PI, Fenton B, Foyer CH, Hancock RD. Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways. Plant Cell Environ. 2012;35(2):441–53. https://doi.org/10.1111/j.1365-3040.2011.02399.x
  62. 62. Kumari A, Goyal M, Cheema HK, Singh DP. Modulation of enzymes and metabolites in response to shoot fly infestation in resistant and susceptible sorghum genotypes. Cereal Res Commun. 2023:1–13.
  63. 63. Singh SK. Explorations of plant’s chemodiversity: role of nitrogen containing secondary metabolites in plant defense. Mol Asp Plant-Pathog Interact. 2018:309–32. https://doi.org/10.1007/978-981-10-7371-7_14
  64. 64. Bala K, Sood AK, Pathania VS, Thakur S. Effect of plant nutrition in insect pest management: a review. J Pharmacogn Phytochem. 2018;7(4):2737–42.
  65. 65. Nwanze KF. Screening for resistance to sorghum shoot fly, plant resistance to insects in sorghum. Patancheru: International crops research institute for the semi-arid tropics; 1997. p. 35–37.
  66. 66. Clissold FJ. The biomechanics of chewing and plant fracture: mechanisms and implications. Adv Insect Physiol. 2007;34:317–72. https://doi.org/10.1016/S0065-2806(07)34006-X
  67. 67. Reynolds OL, Padula MP, Zeng R, Gurr GM. Silicon: potential to promote direct and indirect effects on plant defense against arthropod pests in agriculture. Front Plant Sci. 2016;7:744.
  68. 68. Arora N, Mishra SP, Nitnavare RB, Jaba J, Kumar AA, Bhattacharya J, et al. Morpho-physiological traits and leaf surface chemicals as markers conferring resistance to sorghum shoot fly (Atherigona soccata Rondani). Field Crops Res. 2021;261:108029. https://doi.org/10.1016/j.fcr.2020.108029
  69. 69. Dreyer DL, Reese JC, Jones KC. Aphid feeding deterrents in sorghum: bioassay isolation and characterization. J Chem Ecol. 1981;7:273–84.
  70. 70. Weston LA, Nimbal CI, Jeandet P. Allelopathic potential of grain sorghum (Sorghum bicolor [L.] Moench) and related species. Principles and Practices in Plant Ecology. Boca Raton: CRC Press; 1999. p. 467–77.
  71. 71. Weir TL, Park SW, Vivanco JM. Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol. 2004;7(4):472–9. https://doi.org/10.1016/j.pbi.2004.05.007
  72. 72. Terashima N, Mori I, Kanda T. Biosynthesis of p-hydroxybenzoic acid in poplar lignin. Phytochemistry. 1975;14(9):1991–2. https://doi.org/10.1016/0031-9422(75)83111-6
  73. 73. Chamarthi SK, Sharma HC, Vijay PM, Narasu ML. Leaf surface chemistry of sorghum seedlings influencing expression of resistance to sorghum shoot fly, Atherigona soccata. J Plant Biochem Biotechnol. 2011;20:211–6. https://doi.org/10.1007/s13562-011-0048-3
  74. 74. Kakkar S, Bais S. A review on protocatechuic acid and its pharmacological potential. Int Scholarly Res Notices. 2014;2014:952943. https://doi.org/10.1155/2014/952943
  75. 75. Yang Z, Li N, Kitano T, Li P, Spindel JE, Wang L, et al. Genetic mapping identifies a rice naringenin O-glucosyltransferase that influences insect resistance. Plant J. 2021;106(5):1401–13. https://doi.org/10.1111/tpj.15244
  76. 76. War AR, Sharma HC, Paulraj MG, War MY, Ignacimuthu S. Herbivore induced plant volatiles: their role in plant defense for pest management. Plant Signal Behav. 2011;6(12):1973-8. https://doi.org/10.4161/psb.6.12.18053
  77. 77. Padmaja PG, Woodcock CM, Bruce TJA. Electrophysiological and behavioral responses of sorghum shoot fly, Atherigona soccata, to sorghum volatiles. J Chem Ecol. 2010;36:1346-53. https://doi.org/10.1007/s10886-010-9882-3
  78. 78. Erb M. Volatiles as inducers and suppressors of plant defense and immunity: origins, specificity, perception and signaling. Curr Opin Plant Biol. 2018;44:117-21. https://doi.org/10.1016/j.pbi.2018.03.008
  79. 79. Sharma HC, Nwanze KF, Subramanian V. Mechanisms of resistance to insects and their usefulness in sorghum improvement. Plant resistance to insects in sorghum; 1997. p. 81-100.
  80. 80. Reddy BV, Reddy PS, Sadananda A, Dinakaran E, Ashok Kumar A, Deshpande S, et al. Postrainy season sorghum: constraints and breeding approaches. J SAT Agric Res. 2012;10(1):1-12.
  81. 81. Raut M. Exploitation of heterosis using diverse parental lines in Rabi sorghum. Electron J Plant Breed. 2010;1(4):680-4.
  82. 82. Matova PM, Kamutando CN, Magorokosho C, Kutywayo D, Gutsa F, Labuschagne M. Fall-armyworm invasion, control practices and resistance breeding in Sub-Saharan Africa. Crop Sci. 2020;60(6):2951-70. https://doi.org/10.1002/csc2.20317
  83. 83. Badu-Apraku B, Fakorede MAB. Breeding maize for insect pest resistance. Advances in genetic enhancement of early and extraearly maize for Sub-Saharan Africa. Cham: Springer International Publishing; 2017. p. 411-25. https://doi.org/10.1007/978-3-319-64852-1_15
  84. 84. Bhatt B, Pandey P, Tamta A. Assessing recombinant inbred sorghum lines for resistance to shoot fly (Atherigona soccata): focus on glossiness, vigor and infestation traits. Int J Adv Biochem Res. 2024:403-9. https://doi.org/10.33545/26174693.2024.v8.i7e.1538
  85. 85. Sajjanar G. Genetic analysis and molecular mapping of components of resistance to shoot fly (Atherigona soccata Rond.) in sorghum (Sorghum bicolor (L.) Moench) [thesis]. University of Agricultural Sciences; 2002.
  86. 86. Kiranmayee KNSU, Kishor PBK, Hash CT, Deshpande SP. Evaluation of QTLs for shoot fly (Atherigona soccata) resistance component traits of seedling leaf blade glossiness and trichome density on sorghum (Sorghum bicolor) chromosome SBI-10L. Trop Plant Biol. 2016;9:12-28.
  87. 87. Gorthy S, Narasu L, Gaddameedi A, Sharma HC, Kotla A, Deshpande SP, et al. Introgression of shoot fly (Atherigona soccata L. Moench) resistance QTLs into elite post-rainy season sorghum varieties using marker assisted backcrossing (MABC). Front Plant Sci. 2017;8:1494. https://doi.org/10.3389/fpls.2017.01494
  88. 88. Shankari G. Screening for sorghum shoot fly (Atherigona soccata Rond.) resistance QTLs in F2:3 generation of the cross K8 × IS 18551 in sorghum. Madras Agric J. 2019;106(1-3):1. https://doi.org/10.29321/maj.2019.000281
  89. 89. Abinaya M, Kumaravadivel N, Varanavasiappan S, Kavithamani D. Screening the genotypes of sorghum (Sorghum bicolor (L.) Moench) BC1 F3 generation of the cross CO(S)28 × IS18551 for shoot fly (Atherigona soccata (Rond.)) resistance. Electron J Plant Breed. 2019;10(3):1133-9. https://doi.org/10.5958/0975-928X.2019.00144.3
  90. 90. Gorthy S, Gaddameedi A, Jagannathan J, Are AK, Deshpande SP, Govindaraj M, et al. Comparison of shoot fly resistance QTLs in sorghum introgression lines using SNP genotyping. Indian J Entomol. 2023:40-4.

Downloads

Download data is not yet available.