Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

Foliar application of zinc selenide enhances drought tolerance in maize

DOI
https://doi.org/10.14719/pst.11642
Submitted
5 September 2025
Published
28-10-2025

Abstract

Drought stress severely limits maize (Zea mays L.) growth and grain yield. Foliar application of nanomaterials with antioxidant properties offers a promising strategy for mitigating drought effects. This study evaluated the potential of zinc-selenide quantum dots (ZnSe QDs) to improve drought tolerance in maize. A pot experiment was conducted using a factorial randomised block design (RBD). The first factor was the irrigation regime with 2 levels: (i) irrigated control, where plants were watered daily to maintain 0.9 fraction of transpirable water (FTSW) and (ii) drought-stressed, where plants experienced progressive soil drying from 0.95 to 0.05 FTSW. The second factor was foliar spray with 3 levels: (i) water spray, (ii) combined zinc sulphate (10 mg L-1) and sodium selenate (10 mg L-1) spray (Zn+Se) and (iii) ZnSe QDs (20 mg L-1). The field trial used the same treatment structure. Under drought conditions, foliar application of ZnSe QDs at 20 mg L-1 during the vegetative stage significantly (p<0.05) increased photosystem II quantum yield by 10 %, leaf water content by 22 % and stomatal conductance by 28 % compared to water spray. The rise in photosynthetic rate (28 %) under drought was linked to increased tissue water content, catalase activity
(47 %) and peroxidase activity (60 %). During the reproductive stage, ZnSe QDs spray enhanced the number of seeds m-² and individual seed weight, leading to increased seed yield under drought stress. These findings demonstrate that foliar application of ZnSe QDs at 20 mg L-1 can mitigate drought-induced effects in maize.

References

  1. 1. FAO. The impact of disasters on agriculture and food security 2023 -avoiding and reducing losses through investment in resilience. Rome: FAO; 2023.
  2. 2. FAO. The state of agricultural commodity markets 2018. Agricultural trade, climate change and food security. Rome: FAO; 2018.
  3. 3. Eruaga MA. Policy strategies for managing food safety risks associated with climate change and agriculture. IJSRR. 2024;4:21-32.
  4. 4. Liu X, Zhu X, Pan Y, Li S, Liu Y, Ma Y. Agricultural drought monitoring: progress, challenges and prospects. J Geogr Sci. 2016;26:750-67. https://doi.org/0.1007/s11442-016-1297-9
  5. 5. Poornima S, Pushpalatha M, Jana RB, Patti LA. Rainfall forecast and drought analysis for recent and forthcoming years in India. Water. 2023;15(3):592. https://doi.org/10.3390/w15030592
  6. 6. Arunanondchai P, Fei C, Fisher A, McCarl BA, Wang W, Yang Y. How does climate change affect agriculture? In: Routledge handbook of agricultural economics. Abingdon-on-Thames: Routledge; 2018. p. 1-20.
  7. 7. Hussain S, Rao MJ, Anjum MA, Ejaz S, Zakir I, Ali MA, et al. Oxidative stress and antioxidant defense in plants under drought conditions. In: Hasanuzzaman M, Hakeem KR, Nahar K, Alharby HF, editors. Plant abiotic stress tolerance: agronomic, molecular and biotechnological approaches. Cham: Springer; 2019. p. 207-19.
  8. 8. Zhang J, Zhang S, Cheng M, Jiang H, Zhang X, Peng C, et al. Effect of drought on agronomic traits of rice and wheat: a meta-analysis. Int J Environ Res Public Health. 2018;15:839. https://doi.org/10.3390/ijerph15050839
  9. 9. Erenstein O, Chamberlin J, Sonder K. Estimating the global number and distribution of maize and wheat farms. Glob Food Sec. 2021;30:100558. https://doi.org/10.1016/j.gfs.2021.100558
  10. 10. Mekonnen MM, Gerbens-Leenes W. The water footprint of global food production. Water. 2020;12:2696. https://doi.org/10.3390/w12102696
  11. 11. Bellon MR, Hodson D, Bergvinson D, Beck D, Martinez-Romero E, Montoya Y. Targeting agricultural research to benefit poor farmers: relating poverty mapping to maize environments in Mexico. Food Policy. 2005;30:476-92. https://doi.org/10.1016/j.foodpol.2005.09.003
  12. 12. Prasanna BM, Cairns JE, Zaidi PH, Beyene Y, Makumbi D, Gowda M, et al. Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments. Theor Appl Genet. 2021;134(6):1729-52. https://doi.org/10.1007/s00122-021-03773-7
  13. 13. Farre I, Faci JM. Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment. Agric Water Manag. 2006;83:135-43. https://doi.org/10.1016/j.agwat.2005.11.001
  14. 14. Sajid M. Nanomaterials: types, properties, recent advances and toxicity concerns. Curr Opin Environ Sci Health. 2022;25:100319. https://doi.org/10.1016/j.coesh.2021.100319
  15. 15. Chand MS, Raj S, Trivedi R. Nanotechnology: a novel approach to enhance crop productivity. Biochem Biophys Rep. 2020;24:100821. https://doi.org/10.1016/j.bbrep.2020.100821
  16. 16. Donia DT, Carbone M. Seed priming with zinc oxide nanoparticles to enhance crop tolerance to environmental stresses. Int J Mol Sci. 2023;24(24):17612. https://doi.org/10.3390/ijms242417612
  17. 17. Adhikary S, Biswas B, Chakraborty D, Timsina J, Pal S, Chandra Tarafdar J, et al. Seed priming with selenium and zinc nanoparticles modifies germination, growth and yield of direct-seeded rice (Oryza sativa L.). Sci Rep. 2022;12:7103. https://doi.org/10.1038/s41598-022-11307-4
  18. 18. Kanna VK, Djanaguiraman M, Senthil A, Moorthy PS, Iyanar K, Veerappan A. Improvement of maize drought tolerance by foliar application of zinc selenide quantum dots. Front Plant Sci. 2024;15. https://doi.org/10.3389/fpls.2024.1478654
  19. 19. Djanaguiraman M, Belliraj N, Bossmann SH, Prasad PV. High temperature stress alleviation by selenium nanoparticle treatment in grain sorghum. ACS Omega. 2018;3(3):2479-91. https://doi.org/10.1021/acsomega.7b01934
  20. 20. Djanaguiraman M, Prasad PVV, Murugan M, Perumal R, Reddy UK. Physiological differences among sorghum (Sorghum bicolor L. Moench) genotypes under high temperature stress. Environ
  21. Exp Bot. 2014;100:43-54. https://doi.org/10.1016/j.envexpbot.2013.11.013
  22. 21. Barr HD, Weatherley PE. A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust J Biol Sci. 1962;15:413-28.
  23. 22. Patterson BD, MacRae EA, Ferguson IB. Estimation of hydrogen peroxide in plant extracts using titanium (IV). Anal Biochem. 1984;39:487-92. https://doi.org/10.1016/0003-2697(84)90039-3
  24. 23. Behera TH, Panda SK, Patra HK. Chromium ion induced lipid peroxidation in developing wheat seedlings: role of growth hormones. Indian J Plant Physiol. 1999;4:236-8.
  25. 24. Samantary S. Biochemical responses of Cr-tolerant and Cr-sensitive mung bean cultivars grown on varying levels of chromium. Chemosphere. 2002;47:1065-72. https://doi.org/10.1016/s0045-6535(02)00091-7
  26. 25. Lin CC, Kao CH. NaCl induced changes in ionically bound peroxidase activity in roots of rice seedlings. Plant Soil. 1999;216:147-53. https://doi.org/10.1023/A:1004714506156
  27. 26. United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2024: Methodology of the United Nations population estimates and projections. UN DESA/POP/2024/DC/NO. 10. July 2024.
  28. 27. Wang X, Shi J. Leaf chlorophyll content is the crucial factor for the temporal and spatial variation of global plants leaf maximum carboxylation rate. Sci Total Environ. 2024;927:172280. https://doi.org/10.1016/j.scitotenv.2024.172280
  29. 28. Adil M, Bashir S, Bashir S, Aslam Z, Ahmad N, Younas T, et al. Zinc oxide nanoparticles improved chlorophyll contents, physical parameters and wheat yield under salt stress. Front Plant Sci. 2022;13. https://doi.org/10.3389/fpls.2022.932861
  30. 29. Sun L, Song F, Zhu X, Liu S, Liu F, Wang Y, Li X. Nano-ZnO alleviates drought stress via modulating the plant water use and carbohydrate metabolism in maize. Arch Agron Soil Sci. 2020;67(2):245-59. https://doi.org/10.1080/03650340.2020.1723003
  31. 30. Cakmak I. Tansley Review No. 111: possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 2000;146(2):185-205. https://doi.org/10.1046/j.1469-8137.2000.00630.x
  32. 31. Djanaguiraman M, Prasad PVV, Seppanen M. Selenium protects Sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol Biochem. 2010;48:999-1007. https://doi.org/10.1016/j.plaphy.2010.09.009
  33. 32. Schmid I, Franzaring J, Muller M, Brohon N, Calvo O, Hogy P, et al. Effects of CO₂ enrichment and drought on photosynthesis, growth and yield of an old and a modern Hordeum vulgare cultivar. J Agron Crop Sci. 2016;202:81-95. https://doi.org/10.1111/jac.12127
  34. 33. Djanaguiraman M, Nair R, Giraldo JP, Prasad PVV. Cerium oxide nanoparticles decrease drought-induced oxidative damage in Sorghum leading to higher photosynthesis and grain yield. ACS Omega. 2018;3:14406-16. https://doi.org/10.1021/acsomega.8b01894
  35. 34. Djanaguiraman M, Vidhya Bharathi KS, Raghu R, Jeyakumar P. Sorghum drought tolerance is enhanced by cerium oxide nanoparticles via stomatal regulation and osmolyte accumulation. Plant Physiol Biochem. 2024;212:108733. https://doi.org/10.1016/j.plaphy.2024.108733
  36. 35. Linglan M, Lin C, Qu C, Yin S, Liu J, Gao F, Fashui F. Rubisco activase mRNA expression in Spinacia oleracea: modulation by nanoanatase treatment. Biol Trace Elem Res. 2018;122:168-78. https://doi.org/10.1007/s12011-007-8069-4
  37. 36. El-Zohri M, Al-Wadaani NA, Bafeel SO. Foliar sprayed green zinc oxide nanoparticles mitigate drought-induced oxidative stress in Solanum lycopersicum. Plants. 2021;10:2400. https://doi.org/10.3390/plants10112400
  38. 37. Zarafshar M, Akbarinia M, Askari H, Hosseini SM, Rahaie M, Struve D. Toxicity assessment of SiO₂ nanoparticles to Pyrus seedlings. J Nanosci Nanotechnol. 2015;11(1):13-22.
  39. 38. Das K, Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci. 2014;2:53. https://doi.org/10.3389/fenvs.2014.00053
  40. 39. Sutuliene R, Rageliene L, Samuolienee G, Brazaitytee A, Urbutis M, Miliauskienee J. The response of antioxidant system of drought stressed green pea (Pisum sativum L.) affected by watering and foliar spray with silica nanoparticles. Horticulturae. 2021;8:35. https://doi.org/10.3390/horticulturae8010035
  41. 40. Kolackova M, Moulick A, Kopel P, Dvorak M, Adam V, Klejdus B, Huska D. Antioxidant, gene expression and metabolomics fingerprint analysis of Arabidopsis thaliana treated by foliar spraying of ZnSe quantum dots and their growth inhibition of Agrobacterium tumefaciens. J Hazard Mater. 2019;365:932-41. https://doi.org/10.1016/j.jhazmat.2018.11.065
  42. 41. Wang Z, Yu Y, Chen X, Li Y, Jones A, Rose RJ, et al. Mitigating drought associated reproductive failure in Zea mays: from physiological mechanisms to practical solutions. Crop J. 2025;13(4):1022-31. https://doi.org/10.1016/j.cj.2025.05.004
  43. 42. Harshal RK, Prasad VBR, Djanaguiraman M, Sumathi A, Prabu Kumar G, Patil SG. Zinc–selenium nanocomposite enhances drought tolerance in Pennisetum glaucum by improving photosynthesis. Plant Sci Today. 2025;12(sp3). https://doi.org/10.14719/pst.8600

Downloads

Download data is not yet available.