Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

Organic seed treatment formulations enhance biotic stress tolerance in brinjal cv. CO 2

DOI
https://doi.org/10.14719/pst.11687
Submitted
8 September 2025
Published
12-11-2025

Abstract

Seed enhancement technologies provide eco-friendly alternatives to synthetic protectants for improving crop establishment under stress. In the present study, organic seed pelleting and coating formulations were developed using volcanic ash (as a silicon-rich mineral source), biochar and a microbial consortium. These formulations were evaluated in brinjal (Solanum melongena L.) cv. CO 2 under biotic stresses imposed by Fusarium oxysporum and Pythium aphanidermatum. Results revealed that both pelleting and coating significantly improved seed germination, seedling vigor, root and shoot growth and biomass accumulation compared to the untreated seeds (control). Among various seed treatments, seed pelleting mixture at 500 g kg-1 seed and seed coating formulation at 4 g kg-1 seed consistently outperformed others, recording higher emergence, leaf area and chlorophyll content even under pathogen pressure. The superior performance of these treatments is attributed to the synergistic effects of silicon-mediated structural defense, nutrient mobilization by biochar, phytohormone stimulation and pathogen suppression by microbes and biocontrol agents. This study demonstrates the potential of integrating mineral-based carriers with microbial inoculants in organic seed enhancement technologies to strengthen seedling establishment and resilience against biotic stresses. Thus, eco-innovative formulations provide a sustainable strategy to reduce pesticide dependence and enhance crop productivity in solanaceous vegetables.

References

  1. 1. Ghosh SK. Eggplant (Solanum melongena L.) and climate resilient agricultural practices. In: Clim Suborna Roy Choudhury, Chandan Kumar Panda, editors. Climate change dimensions and mitigation strategies for agricultural sustainability; 2022. Vol. II, Chapter 4, p. 1–24. https://doi.org/10.30954/NDP-climatev2.4
  2. 2. FAOSTAT - Agriculture [Internet]. 2021. Available from: http://faostat.fao.org/faostat/collections?subset=agriculture
  3. 3. Chaudhary P, Agri U, Chaudhary A, Kumar A, Kumar G. Endophytes and their potential in biotic stress management and crop production. Front Microbiol. 2022;13:933017. https://doi.org/10.3389/fmicb.2022.933017
  4. 4. Chattopadhyay C, Birah A, Jalali BL. Climate change: impact on biotic stresses afflicting crop plants. In: Peshin R, Dhawan AK, editors. Natural resource management: ecological perspectives. Cham: Springer International Publishing; 2019. p. 133-46. https://doi.org/10.1007/978-3-319-99768-1_8
  5. 5. Tripathi S, Srivastava P, Devi RS, Bhadouria R. Influence of synthetic fertilizers and pesticides on soil health and soil microbiology. In: Majeti Narasimha Vara Prasad, editor. Agrochemicals detection, treatment and remediation. Butterworth-Heinemann; 2020. p. 25-54. https://doi.org/10.1016/B978-0-08-103017-2.00002-7
  6. 6. Prasad K. Potential impact of seed coating with beneficial microorganisms to meticulousness sustainable organic agriculture for quality nutritive food production for modern lifestyle, improve global soil and environmental health towards green technology. Aditum J Clin Biomed Res. 2021;2:1-9.
  7. 7. Jyoti B, Bhandari S. Seed pelleting - a key for enhancing the seed quality. Rashtriya Krishi. 2016;11(1):76-7.
  8. 8. Afzal I, Javed T, Amirkhani M, Taylor AG. Modern seed technology: seed coating delivery systems for enhancing seed and crop performance. Agriculture. 2020;10(11):526. https://doi.org/10.3390/agriculture10110526
  9. 9. Meena RN, Meena K, Choudhary M. Organic farming - a key to food security and agricultural sustainability. In: Chandran S, Unni MR, Thomas S, Meena DK, editors. Organic Farming. Woodhead Publishing; 2023. p. 1-30. https://doi.org/10.1016/B978-0-323-99145-2.00007-0
  10. 10. Botey HM. Environment, physiological and biochemical effects on seed germination characteristics of African eggplant (Solanum aethiopicum L.). PhD thesis. University of Eldoret; 2022.
  11. 11. ISTA. International rules for seed testing. Bassersdorf (Switzerland): International Seed Testing Association; 2013.
  12. 12. Abdul-Baki AA, Anderson JD. Vigor determination in soybean seed by multiple criteria. Crop Sci. 1973;13(6):630-3. https://doi.org/10.2135/cropsci1973.0011183X001300060013x
  13. 13. Jeong HW, Lee HR, Kim HM, Kim HM, Hwang HS, Hwang SJ. Using light quality for growth control of cucumber seedlings in closed type plant production system. Plants. 2020;9(5):639. https://doi.org/10.3390/plants9050639
  14. 14. Stickler FC, Wearden S, Pauli AW. Leaf area determination in grain sorghum. Agron J. 1961;53(3):187-8. https://doi.org/10.2134/agronj1961.00021962005300030018x
  15. 15. Prakash M, Ophelia AG, Narayanan GS. Cumulative effect of botanical seed pelleting and foliar spray on morpho physiological, leaf chlorophyll, gas exchange and yield parameters in black gram. Legume Res. 2021;44(4):1–8. https://doi.org/10.18805/LR-4132
  16. 16. Rocha I, Ma Y, Souza-Alonso P, Vosátka M, Freitas H, Oliveira RS. Seed coating: a tool for delivering beneficial microbes to agricultural crops. Front Plant Sci. 2019;10:1357. https://doi.org/10.3389/fpls.2019.01357
  17. 17. Ciriminna R, Scurria A, Tizza G, Pagliaro M. Volcanic ash as multinutrient mineral fertilizer: science and early applications. JSFA Rep. 2022;2(11):528-34. https://doi.org/10.1002/jsf2.87
  18. 18. Javed T, Afzal I. Impact of seed pelleting on germination potential, seedling growth and storage of tomato seed. In: Leskovar DI, editor. International Horticultural Congress IHC2018: II International Symposium on Soilless Culture and VIII International 1273; 2018. p. 417-24. https://doi.org/10.17660/ActaHortic.2020.1273.54
  19. 19. Prasad R. Cytokinin and its key role to enrich the plant nutrients and growth under adverse conditions - an update. Front Genet. 2022;13:883924. https://doi.org/10.3389/fgene.2022.883924
  20. 20. Gupta S, Doležal K, Kulkarni MG, Balázs E, Van Staden J. Role of nonmicrobial biostimulants in regulation of seed germination and seedling establishment. Plant Growth Regul. 2022;97(2):271-313. https://doi.org/10.1007/s10725-021-00794-6
  21. 21. Singh J, Jain D, Agarwal P, Singh RP. Auxin and cytokinin synergism augmenting biomass and lipid production in microalgae Desmodesmus sp. JS07. Process Biochem. 2020;95:223-34. https://doi.org/10.1016/j.procbio.2020.02.012
  22. 22. Cardarelli M, Woo SL, Rouphael Y, Colla G. Seed treatments with microorganisms can have a biostimulant effect by influencing germination and seedling growth of crops. Plants. 2022;11(3):259. https://doi.org/10.3390/plants11030259
  23. 23. Harshani HS, Burgess T, Hardy G, Erickson TE. Extruded seed pelleting offers an alternative direct seeding option to rehabilitate forested ecosystems impacted by a soil-borne plant pathogen. Ecol Manag Restor. 2024;25(2):120-8. https://doi.org/10.1111/emr.12600
  24. 24. Gupta R, Elkabetz D, Leibman-Markus M, Jami E, Bar M. Cytokinin microbiome interactions regulate developmental functions. Environ Microbiome. 2022;17(1):2. https://doi.org/10.1186/s40793-022-00397-2
  25. 25. Hyder S, Gondal AS, Rizvi ZF, Atiq R, Haider MI, Fatima N, Inam-ul-Haq M. Biological control of chili damping-off disease, caused by Pythium myriotylum. Front Microbiol. 2021;12:587431. https://doi.org/10.3389/fmicb.2021.587431
  26. 26. Orozco-Mosqueda MD, Santoyo G, Glick BR. Recent advances in the bacterial phytohormone modulation of plant growth. Plants. 2023;12(3):606. https://doi.org/10.3390/plants12030606
  27. 27. Rawat P, Das S, Shankhdhar D, Shankhdhar SC. Phosphate solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. J Soil Sci Plant Nutr. 2021;21(1):49-68. https://doi.org/10.1007/s42729-020-00342-7
  28. 28. Boulahouat S, Cherif-Silini H, Silini A, Bouket AC, Luptakova L, Alenezi FN, Belbahri L. Biocontrol efficiency of rhizospheric Bacillus against the plant pathogen Fusarium oxysporum: a promising approach for sustainable agriculture. Microbiol Res. 2023;14(3):892-908. https://doi.org/10.3390/microbiolres14030062
  29. 29. Soni RK, Modi G. Harnessing silicon to bolster plant resilience against biotic and abiotic stresses. AGBIR. 2024;40(3):1030-2.
  30. 30. Wang M, Gao L, Dong S, Sun Y, Shen Q, Guo S. Role of silicon on plant–pathogen interactions. Front Plant Sci. 2017;8:701. https://doi.org/10.3389/fpls.2017.00701
  31. 31. Chi W, Nan Q, Liu Y, Dong D, Qin Y, Li S, Wu W. Stress resistance enhancing with biochar application and promotion on crop growth. Biochar. 2024;6(1):43. https://doi.org/0.1007/s42773-024-00336-z
  32. 32. Elakiya A, Jerlin R, Sundaralingam K, Gnanachitra M, Maruthasalam S, Sathyamoorthy P. Exploring crop stress alleviation: a potassium silicate perspective. J Soil Sci Plant Nutr. 2025;17:1-9. https://doi.org/10.1007/s42729-025-02423-x
  33. 33. Shanmugaiah V, Gauba A, Hari SK, Prasad R, Ramamoorthy V, Sharma MP. Effect of silicon micronutrient on plant’s cellular signaling cascades in stimulating plant growth by mitigating the environmental stressors. Plant Growth Regul. 2023;100(2):391-408. https://doi.org/10.1007/s10725-023-00982-6

Downloads

Download data is not yet available.