Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Seed yield and quality response to boron and zinc across growth stages in foxtail millet (Setaria italica (L.) P. Beauv.)

DOI
https://doi.org/10.14719/pst.11715
Submitted
10 September 2025
Published
14-01-2026

Abstract

A field experiment was conducted during the post-rainy seasons of 2020-21 and 2021-22 at the ICAR-Indian Institute of Millets Research, Hyderabad, using a split-plot design to evaluate the effects of boron (B) (0.5 %), zinc (Zn) (1 %) and their combination (B + Zn) applied through foliar sprays at panicle initiation (PI), 50 % flowering (FL), both stages (PI + FL) and as soil application (before sowing) on the growth, yield and seed quality of foxtail millet (cv. SiA 3156). Dual-stage foliar sprays of both B and Zn recorded maximum plant height (118 cm), productive tillers per plant (5), primary branches per panicle (119), panicle dry weight (10 g), seed yield per plot (1.40 kg), 100-seed weight (356 mg) and harvest index (48 %). The same treatment also produced superior seed quality traits with 100 % germination, 95 % field emergence and maximum seedling vigor indices indicating the synergistic effect of B and Zn. Foliar application treatments consistently outperformed soil application across both the years. Economic analysis indicated that foliar application of Zn (1 %) at both PI and FL stages recorded the highest benefit–cost ratio (1.6), while combined B (0.5 %) + Zn (1 %) application achieved the highest seed yield. The study highlighted that combining foliar applications of Zn and B at PI and FL significantly enhances plant growth, seed yield and physiological seed quality, underscoring its value as an efficient and sustainable seed production strategy in foxtail millet grown in micronutrient-deficient soils.

References

  1. 1. Yang X, Wan Z, Perry L, Lu H, Wang Q, Zhao C, et al. Early millet uses in northern China. Proc Natl Acad Sci USA. 2012;109(10):3726. https://doi.org/10.1073/pnas.1115430109
  2. 2. Longvah T, Anantan I, Bhaskarachary K, Venkaiah K. Indian food composition tables. Hyderabad: National Institute of Nutrition, Indian Council of Medical Research; 2017.
  3. 3. Geervani P, Eggum BO. Nutrient composition and protein quality of minor millets. Plant Foods Hum Nutr. 1989;39(2):201-08. https://doi.org/10.1007/BF01091900
  4. 4. Itagi S, Naik R, Bharati P, Sharma P. Readymade foxtail millet mix for diabetics. Int J Nat Sci. 2012;3(1):47-50.
  5. 5. Food and Agriculture Organization of the United Nations. FAOSTAT crops data [Internet]. Rome: FAO; 2023.
  6. 6. Department of Agriculture and Farmers Welfare, Ministry of Agriculture and Farmers Welfare, Government of India. Nutri cereals [Internet]. New Delhi: Government of India; 2023.
  7. 7. Imtiaz M, Rashid A, Khan P, Memon MY, Aslam M. The role of micronutrients in crop production and human health. Pak J Bot. 2010;42(4):2565-78.
  8. 8. Phillips M. Economic benefit from using micronutrients for the farmer and the fertilizer producer. In: IFA International Symposium on Micronutrients; 2004; New Delhi, India.
  9. 9. Singh AK, Meena MK, Upadhyaya A. Effect of sulphur and zinc on rice performance and nutrient dynamics in plants and soil of Indo Gangetic plains. J Agric Sci. 2012;4(11):162. https://doi.org/10.5539/jas.v4n11p162
  10. 10. Pooniya V, Shivay YS. Effect of green manuring and zinc fertilization on productivity and nutrient uptake in Basmati rice–wheat cropping system. Indian J Agron. 2011;56(1):28-34. https://doi.org/10.59797/ija.v56i1.4665
  11. 11. Auld DS. Zinc coordination sphere in biochemical zinc sites, bio metals in Australian soils. Aust J Soil Res. 2001;30:45-53. https://doi.org/10.1023/A:1012976615056
  12. 12. Li DD, Tai FJ, Zhang ZT, Li Y, Zheng Y, Wu YF, et al. A cotton gene encodes a tonoplast aquaporin that is involved in cell tolerance to cold stress. Gene. 2009;438:26-32. https://doi.org/10.1016/j.gene.2009.02.023
  13. 13. Shaaban MM, El-Saady AK, El-Sayed AB. Green microalgae water extract and micronutrients foliar application as promoters to nutrient balance and growth of wheat plants. J Am Sci. 2010;6(9):631-36.
  14. 14. Pereira GL, Siqueira JA, Batista-Silva W, Cardoso FB, Nunes-Nesi A, Araújo WL. Boron: more than an essential element for land plants?. Front Plant Sci. 2021;11:610307. https://doi.org/10.3389/fpls.2020.610307
  15. 15. Putra ETS, Zakaris W, Abdullah NAP, Saleh GB. Stomatal morphology, conductance and transpiration of Musa sp. cv. Rastali in relation to magnesium, boron and silicon availability. Am J Plant Physiol. 2012;7:84-96. https://doi.org/10.3923/ajpp.2012.84.96
  16. 16. Rachitha R, Prabhakar M, Rao AM. Influence of foliar nutrition on growth and yield of foxtail millet (Setaria italica L.) under rainfed conditions. Int J Chem Stud. 2020;8(4):2130-33.
  17. 17. Piper CS. Soil and plant analysis. Bombay: Hans Publishers; Madison (WI): Soc Agro Inc.; 1966.
  18. 18. Jackson ML. Soil chemical analysis. New Delhi: Prentice Hall of India Pvt Ltd; 1973. p. 82-205.
  19. 19. Walkley A, Black IA. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934;37(1):29-38. https://doi.org/10.1097/00010694-193401000-00003
  20. 20. Subbiah BV, Asija GL. A rapid procedure for the estimation of available nitrogen in soils. Curr Sci. 1956;25:259-60.
  21. 21. Olsen SR. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Washington (DC): USDA; 1954.
  22. 22. Lindsay WL, Norvell WL. Development of DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc Am J. 1978;42:421-28. https://doi.org/10.2136/sssaj1978.03615995004200030009x
  23. 23. Parker DR, Gardner EH. The determination of hot-water-soluble boron in some acid Oregon soils using a modified azomethine-H procedure. Commun Soil Sci Plant Anal. 1981;12(12):1311-22. https://doi.org/10.1080/00103628109367237
  24. 24. International Seed Testing Association. International rules for seed testing. Bassersdorf (Zurich): ISTA; 2015.
  25. 25. Abdul-Baki AA, Anderson JD. Vigor determination in soybean seed by multiple criteria. Crop Sci. 1973;13(6):630-33. https://doi.org/10.2135/cropsci1973.0011183X001300060013x
  26. 26. Cakmak I. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 2000;146(2):185-205. https://doi.org/10.1046/j.1469-8137.2000.00630.x
  27. 27. Marschner H. Mineral nutrition of higher plants. 3rd ed. London: Academic Press; 2012.
  28. 28. Blesseena A, Deotale RD, Raut DA, Pise SE, Hivare SYV. Response of foliar application of tocopherol and micronutrients on morpho-physiological parameters and yield of chickpea. J Soils Crops. 2019;29(2):336-42.
  29. 29. Qamar J, Rehman A, Ali MA, Qamar R, Ahmed K, Raza W. Boron increases the growth and yield of mungbean. J Adv Agric. 2016;6(2):3.
  30. 30. Naiknaware MD, Pawar GR, Murumkar SB. Effect of varying levels of boron and sulphur on growth, yield and quality of summer groundnut (Arachis hypogea L.). Int J Trop Agric. 2015;33(2):471-74.
  31. 31. Cakmak I. Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil. 2008;302:1-17. https://doi.org/10.1007/s11104-007-9466-3
  32. 32. Pragathi M, Kumar P, Mehera B, Reddy MP. Effect of biofertilizers and micronutrients on growth and yield of foxtail millet. Int J Environ Clim Chang. 2025;9(5):895-98. https://doi.org/10.33545/26174693.2025.v9.i5k.4443
  33. 33. Manjunath NS, Debbarma V. Effect of zinc and boron on growth, yield and economics of finger millet (Eleusine coracana L.). Int J Plant Soil Sci. 2023;35(18):1497-503. https://doi.org/10.9734/ijpss/2023/v35i183417
  34. 34. Oluoch VO, Otinga AN, Njoroge R. Effect of zinc-fertilizer on varietal performance of finger millet (Eleusine coracana) and soybean (Glycine max) in western Kenya. Heliyon. 2024;10(15). https://doi.org/10.1016/j.heliyon.2024.e34829
  35. 35. Reddy YA. Effect of zinc and boron on physiological and yield attributing traits and the trait contribution to grain yield in finger millet (Eleusine coracana (L.) Gaertn.) cv GPU-28. Environ Ecol. 2023;41(1C):671-78.
  36. 36. Solanki M, Didwania N, Nandal V. Potential of zinc solubilizing bacterial inoculants in fodder crops. Momentum. 2016;3(12):1-4.
  37. 37. Davarpanah S, Tehranifar A, Davarynejad G, Abadía J, Khorasani R. Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Sci Hortic. 2016;210:57-64. https://doi.org/10.1016/j.scienta.2016.07.003
  38. 38. Grzebisz W, Wronska M, Diatta JB, Dullin P. Effect of zinc foliar application at an early stage of maize growth on patterns of nutrients and dry matter accumulation by the canopy. Part I. Zinc uptake patterns and its redistribution among maize organs. J Elem. 2008;13(1).
  39. 39. Sakr MT. Foliar fertilization: a tool for rational fertilization. Egypt J Appl Sci. 2005;20(11):555-70.
  40. 40. Dholariya H, Zinzala V, Thesiya N, Patel J, Kumar N. Effect of zinc on growth, yield and economics of finger millet (Eleusine coracana (L.) Gaertn.) on hilly area of South Gujarat. Ann Plant Soil Res. 2023;25(4):630-34.
  41. 41. Jitarwal J, Mehera B, Kumar P, Mahala G, Mund RK. Effect of zinc and panchagavya on growth and yield of pearl millet (Pennisetum glaucum L.). Int J Plant Soil Sci. 2024;36(6):444-49. https://doi.org/10.9734/ijpss/2024/v36i64646
  42. 42. Harris KD, Mathuma V. Effect of foliar application of boron and zinc on growth and yield of tomato (Lycopersicon esculentum Mill.). Asian J Pharm Sci Technol. 2015;5(2):74-78.
  43. 43. Farooq M, Wahid A, Siddique KHM. Micronutrient application through seed treatments-a review. J Soil Sci Plant Nutr. 2012;12(1):125-42. https://doi.org/10.4067/S0718-95162012000100011
  44. 44. Rehman AU, Farooq M, Cheema ZA, Wahid A. Seed priming with boron improves growth and yield of fine grain aromatic rice. Plant Growth Regul. 2012;68:189-201. https://doi.org/10.1007/s10725-012-9706-2
  45. 45. Khan A, Hayat Z, Khan AA, Ahmad J, Abbas MW, Nawaz H, et al. Effect of foliar application of zinc and boron on growth and yield components of wheat. Agric Res Tech. 2019;21(1):3-6. https://doi.org/10.19080/ARTOAJ.2019.21.556148
  46. 46. Prashantha GM, Chikkaramappa T. Growth, yield and uptake of nutrients by finger millet (Eleusine coracana L.) in an alfisol of central dry zone of Karnataka as influenced by the application of zinc and boron. Mysore J Agric Sci. 2017;51(3):680-85.
  47. 47. Bhargav G, Venkateswarlu B, Sree Rekha M, Prasad PRK. Effect of zinc fertilization on growth and yield of finger millet. Andhra Agric J. 2022;69(2):165-71.
  48. 48. Yadav GN, Summaria R, Yadav SL, Sharma S, Yadav LR. Effect of Zn fertilization on yield, protein content, protein yield and zinc use efficiency in pearl millet. bioRxiv. 2022;12. https://doi.org/10.1101/2022.12.08.519627
  49. 49. Dinthaingam T, Dawson J, Singh K. Influence of zinc and boron on growth and yield of maize. Int J Res Agron. 2024;7(8):825-28. https://doi.org/10.33545/2618060X.2024.v7.i8Sk.1392

Downloads

Download data is not yet available.