Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 8 No. 3 (2021)

Use of aqueous plant extracts to reduce profenofos residues in the leaf of mustard (Brassica juncea L.) and suppression of the grasshopper population

DOI
https://doi.org/10.14719/pst.2021.8.3.1173
Submitted
19 March 2021
Published
01-07-2021

Abstract

Profenofos is an active ingredient from the organophosphate group which residue is often found in various fresh and processed vegetable products. This study aimed to assess the use of aqueous plant extracts of Sapindus rarak seeds, Luffa acutangula peel and Centella asiatica leaves to reduce profenofos residues in leaf of mustard and to evaluate their performance in suppressing the grasshopper populations. S. rarak seeds, L. acutangula peels and C. asiatica leaves were dried and filtered using a 100 mesh sieve. A total of 30 gm samples of each ingredient were mixed with 1000 ml of water and blended at 800 rpm, then filtered using 100 mesh sieve before use. The field experiment was performed by spraying profenofos pesticide with a concentration of 3 ml l-1 at a dose of 30 ml per plant. Two days after the profenofos application, the plants were sprayed with the aqueous plant extracts. Twenty-four hrs aqueous plant extracts application, pesticide residues were detected by the UPLC-MS/MS machine. The phytotoxicity test results showed that the use of aqueous plant extracts at a dose of 30 ml per plant did not cause any phytotoxic symptoms. Furthermore, in the field experiment, the control plants showed a residual value of 2407.62 ng g-1. Results of UPLC-MS/MS showed that the residual value of profenofos in PL treatment (aqueous extract of S. rarak seeds) was 1502.05 ng g-1, the recorded residual value in the PP treatment (aqueous extract of C. asiatica leaves) was 1316.27 ng g-1 and the residual value in the PG treatment (aqueous extract of L. acutangula peels) was 660.71 ng g-1. In the treated plants, the residual value decreased from 37.48% to 72.55%. Furthermore, the number of grasshoppers after the PL treatment decreased and was significantly different from the control. This study provides new information that aqueous plant extracts can reduce the residue of profenofos and suppress the population of grasshoppers in the mustard leaf.

References

  1. Mariyono J, Kuntariningsih A, Kompas T. Pesticide use in Indonesian vegetable farming and its determinants. Manag Environ Qual. 2018;29(2): 305-23. https://doi.org/10.1108/MEQ-12-2016-0088
  2. Atreya K, Sitaula BK, Bajracharya RM. Pesticide use in agriculture: the philosophy, complexities and opportunities. Sci Res Essays. 2012;7(25):2168-73. https://doi.org/10.5897/SRE10.107
  3. Hoi PV, Mol AP, Oosterveer P, van den Brink PJ, Huong PT. Pesticide use in Vietnamese vegetable production: a 10-year study. Int J Agric Sustain. 2016;14(3):325-38. https://doi.org/10.1080/14735903.2015.1134395
  4. Storck V, Karpouzas DG, Martin-Laurent F. Towards a better pesticide policy for the European Union. Sci Total Environ. 2017;575:1027-33. https://doi.org/10.1016/j.scitotenv.2016.09.167
  5. Yadav IC, Devi NL. Pesticides classification and its impact on human and environment. Environ Sci Eng. 2017;6:140-58.
  6. Buyang Y, Pasaribu Y. Analisis residu pestisida golongan piretroid pada beberapa sayuran di Kota Merauke. Agricola. 2014;4(1):41-48. https://doi.org/10.35724/ag.v4i1.312
  7. Sumiati A, Julianto RPD. Analisa residu pestisida di Wilayah Malang dan penanggulanganya untuk keamanan pangan buah jeruk. Buana Sains. 2019;18(2):125-30. https://doi.org/10.33366/bs.v18i2.1185
  8. Ahmed A, Randhawa MA, Yusuf MJ, Khalid N. Effect of processing on pesticide residues in food crops: a review. J Agric Res. 2011;49(3):379-90.
  9. Harsanti ES, Martono E, Sudibyakto H, Sugiharto E. Residu insektisida klorpirifos dalam tanah dan produk bawang merah Allium ascalonicum L., di sentra produksi bawang merah di Kabupaten Bantul, Yogyakarta. Ecolab. 2015;9(1):26-35. https://doi.org/10.20886/jklh.2015.9.1.26-35
  10. Jallow MF, Awadh DG, Albaho MS, Devi VY, Ahmad N. Monitoring of pesticide residues in commonly used fruits and vegetables in Kuwait. Int J Environ Res Public Health. 2017;14(8):833. https://doi.org/10.3390/ijerph14080833
  11. Panuwet P, Siriwong W, Prapamontol T, Ryan PB, Fiedler N, Robson MG, et al. Agricultural pesticide management in Thailand: status and population health risk. Environ Sci Policy. 2012;17:72-81. https://doi.org/10.1016/j.envsci.2011.12.005
  12. Del Prado-Lu JL. Insecticide residues in soil, water and eggplant fruits and farmers’ health effects due to exposure to pesticides. Environ Health Prev Med. 2015;20(1):53-62. https://doi.org/10.1007/s12199-014-0425-3
  13. Wang P, Rashid M, Liu J, Hu M, Zhong G. Identification of multi-insecticide residues using GC-NPD and the degradation kinetics of chlorpyrifos in sweet corn and soils. Food Chem. 2016;212:420-26. https://doi.org/10.1016/j.foodchem.2016.05.008
  14. Rodrigues AA, De Queiroz MEL, De Oliveira AF, Neves AA, Heleno FF, Zambolim L et al. Pesticide residue removal in classic domestic processing of tomato and its effects on product quality. J Environ Sci Health B. 2017;52(12):850-57. https://doi.org/10.1080/03601234.2017.1359049
  15. Kazemi M, Tahmasbi AM, Valizadeh R, Naserian AA, Soni A. Organophosphate pesticides: a general review. Agri Sci Res J. 2012;2(9):512-22.
  16. Dalimunthe KT. Analisa kuantitatif residu insektisida profenofos pada cabai merah segar dan cabai merah giling di beberapa pasar tradisional Kota Medan Tahun 2012. Lingkungan dan Keselamatan Kerja. 2012;1(1):1-5.
  17. Olson S. An analysis of the biopesticide market now and where it is going. Outlooks Pest Manag. 2015;26(5):203-06. https://doi.org/10.1564/v26_oct_04
  18. Ivase TJ-P, Nyakuma BB, Ogenyi BU, Balogun AD, Hassan MN. Current status, challenges and prospects of biopesticide utilization in Nigeria. Acta Univ Sapientiae Agric Environ. 2017;9(1):95-106.
  19. Dar SA, Khan Z, Khan AA, Ahmad SB. Biopesticides–ts Prospects and Limitations: An Overview. Perspective in Animal Ecology and Reproduction. New Delhi, India: Astral International (P) Ltd. 2019:296-314.
  20. Al-Snafi AE. A review on Luffa acutangula: a potential medicinal plant. Magnesium. 2019;9(9):56-67.
  21. Mangas S, Moyano E, Osuna L, Cusido RM, Bonfill M, Palazón J. Triterpenoid saponin content and the expression level of some related genes in calli of Centella asiatica. Biotechnol Lett. 2008;30(10):1853-59. https://doi.org/10.1007/s10529-008-9766-6
  22. Yuliana P, Laconi E, Jayanegara A, Achmadi S, Samsudin A. Extracted saponin from Sapindus rarak and Hibiscus sp. as an additive in cassava leaf silage: effects on chemical composition, rumen fermentation and microbial population. Adv Anim Vet Sci. 2019;7(7):530-36. http://dx.doi.org/10.17582/journal.aavs/2019/7.7.530.536
  23. Moghimipour E, Handali S. Saponin: properties, methods of evaluation and applications. Annu Res Rev Biol. 2015;5(3):207-20. https://doi.org/10.9734/ARRB/2015/11674
  24. Wisetkomolmat J, Suppakittpaisarn P, Sommano SR. Detergent plants of Northern Thailand: potential sources of natural saponins. Resources. 2019;8(1):10. https://doi.org/10.3390/resources8010010
  25. Forey N, Atteia O, Omari A, Bertin H. Saponin foam for soil remediation: on the use of polymer or solid particles to enhance foam resistance against oil. J Contam Hydrol. 2020;228:103560. https://doi.org/10.1016/j.jconhyd.2019.103560
  26. Asif M, Tariq M, Khan A, Rehman B, Parihar K, Siddiqui MA. Potential role of aqueous extract of some weeds against egg hatching and juvenile mortality of root-knot nematode Meloidogyne incognita. J Agric Crop. 2017;3(2):17-24.
  27. Tang J, He J, Liu T, Xin X. Removal of heavy metals with sequential sludge washing techniques using saponin: optimization conditions, kinetics, removal effectiveness, binding intensity, mobility and mechanism. RSC Adv. 2017;7(53):33385-401. https://doi.org/10.1039/C7RA04284A
  28. Challinor VL, De Voss JJ. Open-chain steroidal glycosides, a diverse class of plant saponins. Nat Prod Rep. 2013;30(3):429-54. https://doi.org/10.1039/c3np20105h
  29. El Aziz M, Ashour A, Melad A. A review on saponins from medicinal plants: chemistry, isolation and determination. J Nanomed Res. 2019;8:6-12. https://doi.org/10.15406/jnmr.2019.07.00199
  30. Liu Z, Li Z, Zhong H, Zeng G, Liang Y, Chen M, et al. Recent advances in the environmental applications of biosurfactant saponins: a review. J Environ Chem Eng. 2017;5(6):6030-38. https://doi.org/10.1016/j.jece.2017.11.021
  31. Böttger S, Hofmann K, Melzig MF. Saponins can perturb biologic membranes and reduce the surface tension of aqueous solutions: a correlation?. Bioorg Med Chem. 2012;20(9):2822-28. https://doi.org/10.1016/j.bmc.2012.03.032
  32. Fauziah RS, Sudarsono S, Mulyaningsih B. Larvicidal activity of the mixture of cashew nut shell liquid (CNSL) and aqueous extract of Sapindus rarak DC. against larvae of Culex quinquefasciatus. Bio Med Nat Prod Chem. 2014;3(1):21-23. https://doi.org/10.14421/biomedich.2014.31.21-23
  33. Syahroni YY, Prijono D. Aktivitas insektisida ekstrak buah Piper aduncum L. (Piperaceae) dan Sapindus rarak DC. (Sapindaceae) serta campurannya terhadap larva Crocidolomia pavonana (F.) (Lepidoptera: Crambidae). J Entomol Indones. 2015;10(1):39-50. https://doi.org/10.5994/jei.10.1.39
  34. Soam PS, Singh T, Vijayvergia R. Citrullus colocynthis (Linn.) and Luffa acutangula (L.) Roxb. source of bioinsecticides and their contribution in managing climate change. Intl J Appl Biol Pharm Tech. 2013;4(4):7-9.
  35. Degri MM, Mailafiya DM, Wabekwa JW. Efficacy of aqueous leaf extracts and synthetic insecticide on pod-sucking bugs infestation of cowpea (Vigna unguiculata (L.) Walp) in the Guinea Sa-vanna Region of Nigeria. Adv Entomol. 2013;1(2): 10-14. https://doi.org/10.4236/ae.2013.12003
  36. Shahi SK, Patra M, Shukla A, Dikshit A. Use of essential oil as botanical pesticide against post harvest spoilage in Malus pumilo fruit. Biocontrol. 2003;48(2):223-32. https://doi.org/10.1023/A:1022662130614
  37. Chamkasem N, Ollis LW, Harmon T, Lee S, Mercer G. Analysis of 136 pesticides in avocado using a modified QuEChERS method with LC-MS/MS and GC-MS/MS. J Agri Food Chem. 2013;61(10):2315-29. https://doi.org/10.1021/jf304191c
  38. Guo J, Tong M, Tang J, Bian H, Wan X, He L, et al. Analysis of multiple pesticide residues in polyphenol-rich agricultural products by UPLC-MS/MS using a modified QuEChERS extraction and dilution method. Food Chem. 2019;274:452-59. https://doi.org/10.1016/j.foodchem.2018.08.134
  39. Datta R, Kaur A, Saraf I, Singh IP, Kaur S. Effect of crude extracts and purified compounds of Alpinia galanga on nutritional physiology of a polyphagous lepidopteran pest, Spodoptera litura (Fabricius). Ecotoxicol Environ Saf. 2019;168:324-29. https://doi.org/10.1016/j.ecoenv.2018.10.065
  40. Werrie P-Y, Durenne B, Delaplace P, Fauconnier M-L. Phytotoxicity of essential oils: opportunities and constraints for the development of biopesticides a review. Foods. 2020;9(9):1291. https://doi.org/10.3390/foods9091291
  41. Singh R, Sharma B. Phytochemical analysis and pharmaceutical development from Sapindus spp. Biotechnological Advances, Phytochemical Analysis and Ethnomedical Implications of Sapindus species: Springer; 2019. p. 55-88.
  42. Arumugam T, Ayyanar M, Pillai YJK, Sekar T. Phytochemical screening and antibacterial activity of leaf and callus extracts of Centella asiatica. Bangladesh J Pharmacol. 2011;6(1):55-60. https://doi.org/10.3329/bjp.v6i1.8555
  43. Suryanti V, Marliyana S, Astuti I (editors). Chemical constituents of Luffa acutangula (L.) Roxb. fruit. IOP Conference Series: Materials Science and Engineering; 2017: IOP Publishing.
  44. Venkatachalapathy R, Anoop Chandra IR, Das S, Vajiha Aafrin B, Lalitha Priya U, Peter MJ et al. Effective removal of organophosphorus pesticide residues in tomatoes using natural extracts. J Food Process Eng. 2020;43(2):e13351. https://doi.org/10.1111/jfpe.13351
  45. Chen YF, Yang CH, Chang MS, Ciou YP, Huang YC. Foam properties and detergent abilities of the saponins from Camellia oleifera. Int J Mol Sci. 2010;11(11):4417-25. https://doi.org/10.3390/ijms11114417
  46. Schmitt C, Grassl B, Lespes G, Desbrières J, Pellerin V, Reynaud S et al. Saponins: a renewable and biodegradable surfactant from its microwave-assisted extraction to the synthesis of monodisperse lattices. Biomacromolecules. 2014;15(3):856-62. https://doi.org/10.1021/bm401708m
  47. Kralova I, Sjöblom J. Surfactants used in food industry: a review. J Disper Sci Technol. 2009;30(9):1363-83. https://doi.org/10.1080/01932690902735561
  48. De S, Malik S, Ghosh A, Saha R, Saha B. A review on natural surfactants. RSC advances. 2015;5(81):65757-67.
  49. Mayasari SL. Pemanfaatan Getah Biduri (Calotropis gigantea) dan Buah Lerak (Sapindus rarak) Sebagai Pestisida Nabati Pembasmi Keong Mas (Pomacea canaliculata L.) [Thesis]. Surakarta (INA): Universitas Muhammadiyah Surakarta; 2016.
  50. Irawan R. Toksisitas Campuran Ekstrak Daun Tephrosia vogelii (Leguminosae) dan Buah Sapindus rarak (Sapindaceae) terhadap Larva Crocidolomia pavonana [Thesis]. Bogor (INA): IPB University. 2012.

Downloads

Download data is not yet available.