Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Chemical composition and anti-Helicobacter pylori activity of essential oils from rhizomes and tuberous roots of Boesenbergia rotunda (L.) Mansf.

DOI
https://doi.org/10.14719/pst.11764
Submitted
12 September 2025
Published
13-11-2025
Versions

Abstract

Boesenbergia rotunda (Zingiberaceae) is a well-known traditional medicinal and culinary plant found in Southeast Asia and China. The extracts of this plant have been shown to have antibacterial potential against several pathogenic bacteria, including Helicobacter pylori. However, the antibacterial activity of the essential oils (EOs) from B. rotunda toward H. pylori has not been reported. Hence, the present study investigated the chemical compositions and antibacterial properties of the EOs extracted from the rhizomes and tuberous roots of B. rotunda against H. pylori. GC–MS analysis revealed that the rhizome EO was rich in camphor (28.6  %), 1,8-cineole (16.0  %), geraniol (15.5 %) and E-β-ocimene (12.8  %), while the tuberous root EO predominantly contained E-β-ocimene (31.9 %), camphor (19.9 %), geraniol (16.3 %), limonene (7.5 %) and 1,8-cineole       (4.3 %). Both of the EOs exhibited strong anti-H. pylori activity, with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 0.31 and 2.50 mg/mL for the rhizome EO and 0.16 and 1.25 mg/mL for the tuberous root EO, respectively. In vitro urease inhibition assay revealed that these EOs exhibited comparable and significant inhibitory action on the urease activity of H. pylori. Mechanism of action showed that the tuberous root EO had a stronger antibiofilm effect than the rhizome EO and both of the EOs demonstrated potent membrane-permeabilising properties resulting in the leakage of intracellular proteins from H. pylori cells. These findings support the potential application of B. rotunda EOs as effective natural agents for the prevention and control of H. pylori infections. 

References

  1. 1. Montecucco C, Rappuoli R. Living dangerously: how Helicobacter pylori survives in the human stomach. Nat Rev Mol Cell Biol. 2001;2(6):457-66. https://doi.org/10.1038/35073084
  2. 2. Negrei C, Boda D. The mechanisms of action and resistance to fluoroquinolone in Helicobacter pylori infection. In: Roesler BM, editor. Trends in Helicobacter pylori infection. IntechOpen; 2014. p. 349. https://doi.org/10.5772/57081
  3. 3. Binh TT, Shiota S, Nguyen LT, Ho DD, Hoang HH, Ta L, et al. The incidence of primary antibiotic resistance of Helicobacter pylori in Vietnam. J Clin Gastroenterol. 2013;47(3):233. https://doi.org/10.1097/MCG.0b013e3182676e2b
  4. 4. De Francesco V, Giorgio F, Hassan C, Manes G, Vannella L, Panella C, et al. Worldwide Helicobacter pylori antibiotic resistance: a systematic review. J Gastrointestin Liver Dis. 2010;19(4):409-14.
  5. 5. Frenck RW, Clemens J. Helicobacter in the developing world. Microbes Infect. 2003;5(8):705-13. https://doi.org/10.1016/S1286-4579(03)00112-6
  6. 6. Phan TN, Santona A, Tran TNH, Cappuccinelli P, Rubino S, Paglietti B. High rate of levofloxacin resistance in a background of clarithromycin- and metronidazole-resistant Helicobacter pylori in Vietnam. Int J Antimicrob Agents. 2015;45(3):244-8. https://doi.org/10.1016/j.ijantimicag.2014.10.019
  7. 7. Quek C, Pham ST, Tran KT, Pham BT, Huynh LV, Luu NB, et al. Antimicrobial susceptibility and clarithromycin resistance patterns of Helicobacter pylori clinical isolates in Vietnam. F1000Res. 2016;5:8239. https://doi.org/10.12688/f1000research.8239.1
  8. 8. Qneibi M, Bdir S, Maayeh C, Bdair M, Sandouka D, Basit D, et al. A comprehensive review of essential oils and their pharmacological activities in neurological disorders: exploring neuroprotective potential. Neurochem Res. 2024;49(2):258-89. https://doi.org/10.1007/s11064-023-04032-5
  9. 9. Bergonzelli GE, Donnicola D, Porta N, Corthésy-Theulaz IE. Essential oils as components of a diet-based approach to management of Helicobacter infection. Antimicrob Agents Chemother. 2003;47(10):3240-6. https://doi.org/10.1128/AAC.47.10.3240-3246.2003
  10. 10. Hung TT, Ngan LTM, Le B, Hieu TT. Effects of plant essential oils and their constituents on Helicobacter pylori: a review. Plant Sci Today. 2023;10:334-44.
  11. 11. Hung TT, Ngan LTM, Viet H, Hoang NVM, Hieu TT. Chemical composition and anti-Helicobacter pylori activity of essential oil from fresh fruits of Litsea cubeba (Lour.) Pers. J Essent Oil Res. 2023;35(3):207-19. https://doi.org/10.1080/10412905.2023.2167876
  12. 12. Korona-Glowniak I, Glowniak-Lipa A, Ludwiczuk A, Baj T, Malm A. The in vitro activity of essential oils against Helicobacter pylori growth and urease activity. Molecules. 2020;25(3):586. https://doi.org/10.3390/molecules25030586
  13. 13. Hop NQ, The Son N. Boesenbergia rotunda (L.) Mansf.: a review of phytochemistry, pharmacology and pharmacokinetics. Curr Org Chem. 2023;27(21):1842-56. https://doi.org/10.2174/0113852728278058231123094250
  14. 14. Wang Y, Wen J, Liu F, Peng X, Xu G, Zhang M, et al. Traditional usages, chemical metabolites, pharmacological activities and pharmacokinetics of Boesenbergia rotunda (L.) Mansf.: a comprehensive review. Front Pharmacol. 2025;16:1527210. https://doi.org/10.3389/fphar.2025.1527210
  15. 15. Ongwisespaiboon O, Jiraungkoorskul W. Fingerroot, Boesenbergia rotunda and its aphrodisiac activity. Pharmacogn Rev. 2017;11(21):27. https://doi.org/10.4103/phrev.phrev_50_16
  16. 16. Han C, Raksat A, Atanu MSH, Chang LK, Wall MM, Chang LC. Investigation of antimicrobial, antioxidant and cytotoxic activities of Boesenbergia rotunda rhizome extract. J Curr Sci Technol. 2024;14(1):20. https://doi.org/10.59796/jcst.V14N1.2024.20
  17. 17. Zainin N, Lau K, Zakaria M, Son R, Razis AA, Rukayadi Y. Antibacterial activity of Boesenbergia rotunda (L.) Mansf. A. extract against Escherichia coli. Int Food Res J. 2013;20(6):3319.
  18. 18. Raja Mazlan R, Zakaria M, Rukayadi Y. Antimicrobial activity of fingerroot [Boesenbergia rotunda (L.) Mansf. A.] extract against Streptococcus mutans and Streptococcus sobrinus. J Pure Appl Microbiol. 2016;10(3). https://doi.org/10.22207/JPAM.10.3.09
  19. 19. Bhamarapravati S, Juthapruth S, Mahachai W, Mahady G. Antibacterial activity of Boesenbergia rotunda (L.) Mansf. and Myristica fragrans Houtt. against Helicobacter pylori. Songklanakarin J Sci Technol. 2006;28(1):157-63.
  20. 20. Bhamarapravati S, Mahady G, Pendland S, editors. In vitro susceptibility of Helicobacter pylori to extracts from the Thai medicinal plant Boesenbergia rotunda and pinostrobin. Proceedings of the 3rd World Congress on Medicinal and Aromatic Plants for Human Welfare, Chiang Mai, Thailand; 2003.
  21. 21. Theanphong O, Mingvanish W, Jenjittikul T, Rungsihirunrat K. Genetic variation of Boesenbergia rotunda (L.) Mansf. from Thailand based on essential oil compositions and internal transcribed spacer sequences. Songklanakarin J Sci Technol. 2021;43(6).
  22. 22. Baharudin MKA, Hamid SA, Susanti D. Chemical composition and antibacterial activity of essential oils from three aromatic plants of the Zingiberaceae family in Malaysia. J Phys Sci. 2015;26(1):71.
  23. 23. Sanguansermsri D, Sanguansermsri P, Buaban K, Kawaree R, Wongkattiya N. Antimicrobial activity and time-kill kinetics of Boesenbergia rotunda essential oil and geraniol alcohol against oral bacterial pathogens. J Appl Pharm Sci. 2024;14(2):215-21. https://doi.org/10.7324/JAPS.2024.154568
  24. 24. Tasfiyati AN, Septama AW, Sukirno S, editors. Chemical constituents of Temu Kunci (Boesenbergia rotunda) essential oil from Indonesia and its antibacterial and antibiofilm activities against foodborne pathogens. AIP Conf Proc. 2023. https://doi.org/10.1063/5.0172769
  25. 25. Apinundecha C, Teethaisong Y, Suknasang S, Ayamuang I-O, Eumkeb G. Synergistic interaction between Boesenbergia rotunda (L.) Mansf. essential oil and cloxacillin on methicillin-resistant Staphylococcus aureus inhibition. Evid Based Complement Alternat Med. 2023;2023(1):3453273. https://doi.org/10.1155/2023/3453273
  26. 26. Hung TT, Trang PT, Viet H, Lan NTM, Ngan LTM, Hieu TT. In vitro antimicrobial activity of hydrosol from Litsea cubeba (Lour.) Pers. against Helicobacter pylori and Candida albicans. Biomed Res Ther. 2020;7(6):3819-28. https://doi.org/10.15419/bmrat.v7i6.610
  27. 27. Trung HT, Huynh HTT, Thuy LNT, Van Minh HN, Nguyen M-NT, Thi MNL. Growth-inhibiting, bactericidal, antibiofilm and urease inhibitory activities of Hibiscus rosa sinensis L. flower constituents toward antibiotic-sensitive and -resistant strains of Helicobacter pylori. ACS Omega. 2020;5(32):20080. https://doi.org/10.1021/acsomega.0c01640
  28. 28. Adams RP. Identification of essential oil components by gas chromatography/mass spectrometry. 5th ed. Gruver, TX: Texensis Publishing; 2017. p. 46-52.
  29. 29. Ngan LTM, Moon J-K, Shibamoto T, Ahn Y-J. Growth-inhibiting, bactericidal and urease inhibitory effects of Paeonia lactiflora root constituents and related compounds on antibiotic-susceptible and -resistant strains of Helicobacter pylori. J Agric Food Chem. 2012;60(36):9062-73. https://doi.org/10.1021/jf3035034
  30. 30. Bower CE, Holm-Hansen T. A salicylate-hypochlorite method for determining ammonia in seawater. Can J Fish Aquat Sci. 1980;37(5):794-8. https://doi.org/10.1139/f80-106
  31. 31. Al-Zabt AM, Dek MSP, Ramli NS, Rukayadi Y. Toxicity evaluation of the ethanolic Syzygium malaccense (L.) Merr. and Perry leaves extract and mechanisms underlying its antibacterial action. Malays J Microbiol. 2022;18(5). https://doi.org/10.21161/mjm.221548
  32. 32. Devi KP, Nisha SA, Sakthivel R, Pandian SK. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J Ethnopharmacol. 2010;130(1):107-15. https://doi.org/10.1016/j.jep.2010.04.025
  33. 33. Li N, Luo M, Fu YJ, Zu YG, Wang W, Zhang L, et al. Effect of corilagin on membrane permeability of Escherichia coli, Staphylococcus aureus and Candida albicans. Phytother Res. 2013;27(10):1517-23. https://doi.org/10.1002/ptr.4891
  34. 34. Ernst O, Zor T. Linearization of the Bradford protein assay. J Vis Exp. 2010;(38):e1918. https://doi.org/10.3791/1918
  35. 35. Ngan LTM, Moon J-K, Kim J-H, Shibamoto T, Ahn Y-J. Growth-inhibiting effects of Paeonia lactiflora root steam distillate constituents and structurally related compounds on human intestinal bacteria. World J Microbiol Biotechnol. 2012;28:1575-83. https://doi.org/10.1007/s11274-011-0961-6
  36. 36. Gogoi R, Loying R, Sarma N, Munda S, Pandey SK, Lal M. A comparative study on antioxidant, anti-inflammatory, genotoxicity, anti-microbial activities and chemical composition of fruit and leaf essential oils of Litsea cubeba Pers. from North-east India. Ind Crops Prod. 2018;125:131-9. https://doi.org/10.1016/j.indcrop.2018.08.052
  37. 37. Sarma N, Begum T, Pandey SK, Gogoi R, Munda S, Lal M. Chemical composition of Syzygium cumini (L.) Skeels leaf essential oil with respect to its uses from North East region of India. J Essent Oil Bear Plants. 2020;23(3):601-7. https://doi.org/10.1080/0972060X.2020.1796822
  38. 38. Polatoglu K, Demirci F, Demirci B, Gören N, Baser KHC. Antibacterial activity and the variation of Tanacetum parthenium (L.) Schultz Bip. essential oils from Turkey. J Oleo Sci. 2010;59(4):177-84. https://doi.org/10.5650/jos.59.177
  39. 39. Karaca N, Şener G, Demirci B, Demirci F. Synergistic antibacterial combination of Lavandula latifolia Medik. essential oil with camphor. Z Naturforsch C. 2021;76(3-4):169-73. https://doi.org/10.1515/znc-2020-0051
  40. 40. Taha AM, Eldahshan OA. Chemical characteristics, antimicrobial and cytotoxic activities of the essential oil of Egyptian Cinnamomum glanduliferum bark. Chem Biodivers. 2017;14(5):e1600443. https://doi.org/10.1002/cbdv.201600443
  41. 41. Shyu JG, Hsu CK, Hsu KP, Yang ML, Wei LY, Ho HT, et al. Chemical composition, in vitro antibacterial and antifungal activities of different parts essential oils of Neolitsea sericea var. aurata from Taiwan. Nat Prod Commun. 2023;18(3):1934578X231166290. https://doi.org/10.1177/1934578X231166290
  42. 42. Rozza AL, de Mello Moraes T, Kushima H, Tanimoto A, Marques MO, Bauab TM, et al. Gastroprotective mechanisms of Citrus lemon (Rutaceae) essential oil and its majority compounds limonene and β-pinene. Chem Biol Interact. 2011;189(1-2):82-9. https://doi.org/10.1016/j.cbi.2010.09.031
  43. 43. Kafarski P, Talma M. Recent advances in design of new urease inhibitors: a review. J Adv Res. 2018;13:101-12. https://doi.org/10.1016/j.jare.2018.01.007
  44. 44. Yenigun S, Basar Y, Gul F, Marah S, Behcet L, Demirtas I, et al. Chemical constituents and bioactivities of Nepeta taxa essential oils from Turkey: principal component analysis, molecular docking study, molecular dynamics, MM-PBSA and drug-likeness estimation. ChemistrySelect. 2024;9(18):e202400583. https://doi.org/10.1002/slct.202400583
  45. 45. Sachs G, Weeks DL, Wen Y, Marcus EA, Scott DR, Melchers K. Acid acclimation by Helicobacter pylori. Physiology. 2005;20(6):429-38. https://doi.org/10.1152/physiol.00032.2005
  46. 46. Hathroubi S, Servetas SL, Windham I, Merrell DS, Ottemann KM. Helicobacter pylori biofilm formation and its potential role in pathogenesis. Microbiol Mol Biol Rev. 2018;82(2):e00001-18. https://doi.org/10.1128/MMBR.00001-18
  47. 47. Wu K, Lin Y, Chai X, Duan X, Zhao X, Chun C. Mechanisms of vapor-phase antibacterial action of essential oil from Cinnamomum camphora var. linaloofera Fujita against Escherichia coli. Food Sci Nutr. 2019;7(8):2546-55. https://doi.org/10.1002/fsn3.1104
  48. 48. Hao K, Xu B, Zhang G, Lv F, Wang Y, Ma M, et al. Antibacterial activity and mechanism of Litsea cubeba L. essential oil against Acinetobacter baumannii. Nat Prod Commun.2021;16(3):1934578X21999146.https://doi.org/10.1177/1934578X21999146
  49. 49. Bouyahya A, Abrini J, Dakka N, Bakri Y. Essential oils of Origanum compactum increase membrane permeability, disturb cell membrane integrity and suppress quorum-sensing phenotype in bacteria. J Pharm Anal. 2019;9(5):301-11. https://doi.org/10.1016/j.jpha.2019.03.001

Downloads

Download data is not yet available.