Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

Evaluation of antifungal bioactive compounds in essential oils for eco-friendly management of mango anthracnose

DOI
https://doi.org/10.14719/pst.11832
Submitted
18 September 2025
Published
25-11-2025

Abstract

Mango anthracnose, caused by Colletotrichum gloeosporioides, is an important disease responsible for considerable yield and quality losses both in the field and postharvest conditions. Currently, synthetic fungicides are used to manage anthracnose; however, growing concerns over chemical residues, environmental impact and consumer health have driven the search for safer and more sustainable alternatives. The use of essential oils (EOs) is recognized as a safe and environmentally sustainable alternative to synthetic fungicides. Hence, the in vitro study assessed the antifungal effects of selected EOs against C. gloeosporioides. A poisoned food bioassay was carried
out to evaluate the antifungal effect of EOs (citronella, clove, ginger, ocimum, lemon grass, garlic, cinnamon, black cumin, black pepper, onion). Bioassays consisted of EOs at 0.025, 0.050, 0.075, 0.10, 0.15 and 0.20 % concentration with an untreated control and three replicates. Complete inhibition of mycelial growth was recorded with citronella and cinnamon EOs at 0.050 %, whereas lemon grass and clove EOs required 0.075 % for complete suppression against C. gloeosporioides, causing mango anthracnose. Gas chromatography mass spectrometry (GC-MS) analysis revealed key bioactive compounds attributed to antifungal activity: citronellal and D-Limonene in citronella; eugenol in clove; cinnamaldehyde in cinnamon; and neral and geranial in lemon grass essential EOs. These compounds are
known to disrupt fungal membranes and enzymatic functions. The concentration-dependent inhibition indicated that these four EOs, rich in specific antifungal constituents, could be effective natural alternatives for managing mango anthracnose.

References

  1. 1. FAO. FAOSTAT: crops and livestock products. Food and Agriculture Organization of the United Nations; 2025 [cited 2025 Oct 21]. Available from: https://www.fao.org/faostat
  2. 2. Sharma RR, Singh D, Singh R. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol Control. 2014;50(3):205-21. https://doi.org/10.1016/j.biocontrol.2009.05.001
  3. 3. Zhang M, Xiao C, Tan Q, Dong L, Liu X, Pu J, Zhang H. The involvement of the laccase gene Cglac13 in mycelial growth, germ tube development and the pathogenicity of Colletotrichum gloeosporioides from mangoes. J Fungi (Basel). 2023;9(5):503. https://doi.org/10.3390/jof9050503
  4. 4. Ma Z, Liu F, Tsui CKM, Cai L, Zhang Y, Li H, et al. Phylogenomics and adaptive evolution of the Colletotrichum gloeosporioides species complex. Commun Biol. 2025;8:593. https://doi.org/10.1038/s42003-025-08024-9
  5. 5. Rattanakreetakul C, Keawmanee P, Bincader S, Mongkolporn O, Phuntumart V, Chiba S, Pongpisutta R. Two newly identified Colletotrichum species associated with mango anthracnose in central Thailand. Plants. 2023;12(5):1130. https://doi.org/10.3390/plants12051130
  6. 6. Dofuor AK, Quartey NK, Osabutey AF, Antwi-Agyakwa AK, Asante K, Boateng BO, et al. Mango anthracnose disease: the current situation and direction for future research. Front Microbiol. 2023;14:1168203. https://doi.org/10.3389/fmicb.2023.1168203
  7. 7. Sudau ET, Norhashila H, Siti KB, Siti II, Maimunah MA. Characterisation of physicochemical properties of mango infected by Colletotrichum gloeosporioides. Food Res. 2025;9(1):34-41. https://doi.org/10.26656/fr.2017.9(S1).022
  8. 8. Lin WL, Duan CH, Wang CL. Identification and virulence of Colletotrichum species causing anthracnose on mango. Plant Pathol. 2022;71(6):1178-90. https://doi.org/10.1111/ppa.13682
  9. 9. Nega A, Dalga D, Buke T. Assessment of the current status of and characterization of mango anthracnose (Colletotrichum gloeosporioides) isolates in Wolaita zone, south Ethiopia. J Sci Inclus Dev. 2025;7(1):80-103. Available from: https://www.ajol.info/index.php/jsid/article/view/305061
  10. 10. Denoyes-Rothan B, Guérin G, Délye C, Smith B, Minz D, Maymon M, et al. Genetic diversity and pathogenic variability among isolates of Colletotrichum species from strawberry. Phytopathology. 2003;93(2):219-28. https://doi.org/10.1094/PHYTO.2003.93.2.219
  11. 11. Prusky D, Alkan N, Mengiste T, Fluhr R. Quiescent and necrotrophic lifestyle choice during postharvest disease development. Annu Rev Phytopathol. 2013;51:155-76. https://doi.org/10.1146/annurev-phyto-082712-102349
  12. 12. Fufa N, Hailu G. Survey of mango postharvest disease and loss in the western parts of Ethiopia. Adv Crop Sci Tech. 2024;12:684.
  13. 13. Uddin M, Shefat S, Afroz M, Moon N. Management of anthracnose disease of mango caused by Colletotrichum gloeosporioides: a review. Acta Sci Agric. 2018;2(10):169-77.
  14. 14. Kumar AS, Reddy NE, Reddy KH, Devi MC. Evaluation of fungicidal resistance among Colletotrichum gloeosporioides isolates causing mango anthracnose in Agri Export Zone of Andhra Pradesh, India. Plant Pathol Bull. 2007;16(3):157-60.
  15. 15. Tripathi P, Dubey NK, Shukla AK. Use of some essential oils as postharvest botanical fungicides in the management of grey mould of grapes caused by Botrytis cinerea. World J Microbiol Biotechnol. 2008;24(1):39-46. https://doi.org/10.1007/s11274-007-9435-2
  16. 16. Wang D, Zhang J, Jia X, Xin L, Zhai H. Antifungal effects and potential mechanism of essential oils on Colletotrichum gloeosporioides in vitro and in vivo. Molecules. 2019;24(18):3386. https://doi.org/10.3390/molecules24183386
  17. 17. Nazzaro F, Fratianni F, de Martino L, Coppola R, de Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals. 2017;6(12):1451-74. https://doi.org/10.3390/ph6121451
  18. 18. Wu H, Zhao F, Li Q, Huang J, Ju J. Antifungal mechanism of essential oil against foodborne fungi and its application in the preservation of baked food. Crit Rev Food Sci Nutr. 2022;64(9):2695-707. https://doi.org/10.1080/10408398.2022.2124950
  19. 19. Zahraoui EM. Essential oils: antifungal activity and study methods. Moroccan J Agric Sci. 2025;6(2):99-108. https://doi.org/10.5281/zenodo.15472437
  20. 20. Gómez JV, Tarazona A, Mateo-Castro R, Gimeno-Adelantado JV, Jiménez M, Mateo EM. Selected plant essential oils and their main active components, a promising approach to inhibit aflatoxigenic fungi and aflatoxin production in food. Food Addit Contam Part A. 2018;35(8):1581-95. https://doi.org/10.1080/19440049.2017.1419287
  21. 21. Maurya A, Prasad J, Das S, Dwivedy AK. Essential oils and their application in food safety. Front Sustain Food Syst. 2021;5:653420. https://doi.org/10.3389/fsufs.2021.653420
  22. 22. Lamare N, Radhakrishnan NV, Thara SS, Simi S, Kumar AS, Rithesh L. Screening of mango varieties against anthracnose diseases caused by Colletotrichum gloeosporioides and its in vitro management through biocontrol agents and fungicides. J Adv Biol Biotechnol. 2024;27(11):1063-72. https://doi.org/10.9734/jabb/2024/v27i111691
  23. 23. Kaviyarasi M, Kamalakannan A, Rajendran L, Subramanian R, Mathiyazhagan K, Lakshmi K, Basha J. Morphological and molecular characterization of Colletotrichum gloeosporioides causing mango anthracnose. Int J Plant Soil Sci. 2022;34:837-44. https://doi.org/10.9734/ijpss/2022/v34i2031230
  24. 24. Soliman KM, Badeaa RI. Effect of oil extracted from some medicinal plants on different mycotoxigenic fungi. Food Chem Toxicol. 2002;40(11):1669-75. https://doi.org/10.1016/S0278-6915(02)00120-5
  25. 25. Vincent JM. Distortion of fungal hyphae in the presence of certain inhibitors. Nature. 1947;150:850. https://doi.org/10.1038/159850b0
  26. 26. Prusky D, Kobiler I, Miyara I, Alkan N. Fruit diseases. In: Litz RE, editor. The mango: botany, production and uses. Wallingford (UK): CABI; 2009. p. 210-30. https://doi.org/10.1079/9781845934897.0210
  27. 27. Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, et al. The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 2012;13(4):414-30. https://doi.org/10.1111/j.1364-3703.2011.00783.x
  28. 28. Weir BS, Johnston PR, Damm U. The Colletotrichum gloeosporioides species complex. Stud Mycol. 2012;73(1):115-80. https://doi.org/10.3114/sim0011
  29. 29. Sharma G, Kumar N, Weir BS, Hyde KD, Shenoy BD. The ApMat marker can resolve Colletotrichum species: a case study with Mangifera indica. Fungal Divers. 2013;61:117-38. https://doi.org/10.1007/s13225-013-0247-4
  30. 30. da Silva Bomfim N, Kohiyama CY, Nakasugi LP, Nerilo SB, Mossini SA, Romoli JC, et al. Antifungal and antiaflatoxigenic activity of rosemary essential oil and its constituents. Food Control. 2015;59:372-8.
  31. 31. Zaker M. Natural plant products as eco-friendly fungicides for plant disease control: a review. The Agriculturists. 2016;14(1):134-41. https://doi.org/10.3329/agric.v14i1.29111
  32. 32. Nychas GJE. Natural antimicrobials from plants. In: Gould GW, editor. New methods of food preservation. Boston (MA): Springer; 1995. p. 58-89. https://doi.org/10.1007/978-1-4615-2105-1_4
  33. 33. Cox SD, Mann CM, Markham JL, Bell HC, Gustafson JE, Warmington JR, et al. The mode of antimicrobial action of essential oil of Melaleuca alternifolia (tea tree oil). J Appl Microbiol. 2000;88(1):170-5. https://doi.org/10.1046/j.1365-2672.2000.00943.x
  34. 34. Burt S. Essential oils: their antibacterial properties and potential applications in foods-a review. Int J Food Microbiol. 2004;94(3):223-53. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
  35. 35. Li WR, Shi QS, Ouyang YS, Chen YB, Duan SS. Antifungal effects of citronella oil against Aspergillus niger ATCC 16404. Appl Microbiol Biotechnol. 2013;97(16):7483-92. https://doi.org/10.1007/s00253-012-4460-y
  36. 36. Lozada MIO, Silva PP da, Pereira RB, Nascimento WM. Essential oils in the control of Colletotrichum gloeosporioides f. sp. cepae in onion seeds. Rev Agron. 2019;50(3):510-8. https://doi.org/10.5935/1806-6690.20190060
  37. 37. Zhang J, Liu H, Yao J, Ma C, Yang W, Lei Z, Li R. Plant-derived citronellol can significantly disrupt cell wall integrity maintenance of Colletotrichum camelliae. Pestic Biochem Physiol. 2024;204:106087. https://doi.org/10.1016/j.pestbp.2024.106087
  38. 38. Kaur G, Ganjewala D, Bist V, Verma PC. Antifungal and larvicidal activities of two acyclic monoterpenes; citral and geraniol against phytopathogenic fungi and insects. Arch Phytopathol Plant Protect. 2019;52(5-6):458-69. https://doi.org/10.1080/03235408.2019.1651579
  39. 39. Balendres MA, Dela Cueva FM. Growth-inhibiting activity of citronella essential oil to multiple fungal plant pathogens. bioRxiv. 2019;860718. https://doi.org/10.1101/860718
  40. 40. Tang X, Shao YL, Tang YJ, Zhou WW. Antifungal activity of essential oil compounds (geraniol and citral) and inhibitory mechanisms on grain pathogens (Aspergillus flavus and Aspergillus ochraceus). Molecules. 2018;23(9):2108. https://doi.org/10.3390/molecules23092108
  41. 41. Toledo LGD, Ramos MADS, Spósito L, Castilho EM, Pavan FR, Lopes EDO, et al. Essential oil of Cymbopogon nardus (L.) Rendle: a strategy to combat fungal infections caused by Candida species. Int J Mol Sci. 2016;17(8):1252. https://doi.org/10.3390/ijms17081252
  42. 42. Boubrik F, Boubellouta T, Benyoucef N, Bellik Y, Gali L, Akdoğan A, et al. Investigating the chemical composition and antifungal effect of Cinnamomum cassia essential oil against Saccharomyces cerevisiae and Acremonium sp. Sci Rep. 2025;15:10195. https://doi.org/10.1038/s41598-025-94785-6
  43. 43. Zhou LR, Hu HJ, Wang J, Zhu YX, Zhu XD, Ma JW, et al. Cinnamaldehyde acts as a fungistat by disrupting the integrity of Fusarium oxysporum Fox-1 cell membranes. Horticulturae. 2024;10(1):48. https://doi.org/10.3390/horticulturae10010048
  44. 44. Wei J, Bi Y, Xue H, Wang Y, Zong Y, Prusky D. Antifungal activity of cinnamaldehyde against Fusarium sambucinum involves inhibition of ergosterol biosynthesis. J Appl Microbiol. 2020;129(2):256-65. https://doi.org/10.1111/jam.14601
  45. 45. Raut JS, Shinde RB, Chauhan NM, Karuppayil SM. Terpenoids of plant origin inhibit morphogenesis, adhesion and biofilm formation by Candida albicans. Biofouling. 2013;29(1):87-96. https://doi.org/10.1080/08927014.2012.749398
  46. 46. Pinto E, Vale-Silva L, Cavaleiro C, Salgueiro L. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J Med Microbiol. 2009;58(11):1454-62. https://doi.org/10.1099/jmm.0.010538-0
  47. 47. Nogueira AC, Morais SM, Souza EB, Albuquerque MR, Santos HS, Cavalcante CS, et al. Antifungal and antioxidant activities of Vernonia chalybaea Mart. ex DC. essential oil and their major constituent β-caryophyllene. Braz Arch Biol Technol. 2020;63:e20190177. https://doi.org/10.1590/1678-4324-2020190177
  48. 48. Nguefack J, Leth V, Zollo PA, Mathur SB. Evaluation of five essential oils from aromatic plants of cameroon for controlling food spoilage and mycotoxin producing fungi. Int J Food Microbiol. 2004;94(3):329-34. https://doi.org/10.1016/j.ijfoodmicro.2004.02.017
  49. 49. Yin MC, Tsao SM. Inhibitory effect of seven Allium plants upon three Aspergillus species. Int J Food Microbiol. 1999;49(1-2):49-56. https://doi.org/10.1016/S0168-1605(99)00061-6
  50. 50. Curtis H, Noll U, Störmann J, Slusarenko AJ. Broad-spectrum activity of the volatile phytoanticipin allicin in extracts of garlic (Allium sativum L.) against plant pathogenic bacteria, fungi and oomycetes. Physiol Mol Plant Pathol. 2004;65(2):79-89. https://doi.org/10.1016/j.pmpp.2004.11.006
  51. 51. Ankri S, Mirelman D. Antimicrobial properties of allicin from garlic. Microbes Infect. 1999;1(2):125-9. https://doi.org/10.1016/S1286-4579(99)80003-3
  52. 52. Pawar VC, Thaker VS. In vitro efficacy of 75 essential oils against Aspergillus niger. Mycoses. 2006;49(4):316-23. https://doi.org/10.1111/j.1439-0507.2006.01241.x
  53. 53. Kalemba DA, Kunicka A. Antibacterial and antifungal properties of essential oils. Curr Med Chem. 2003;10(10):813-29. https://doi.org/10.2174/0929867033457719

Downloads

Download data is not yet available.