Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

Silica-mediated resistance in cauliflower against diamondback moth (Plutella xylostella)

DOI
https://doi.org/10.14719/pst.11872
Submitted
20 September 2025
Published
21-11-2025

Abstract

Diamondback moth (DBM) (Plutella xylostella L.) is a destructive pest of cruciferous crops with a high propensity to develop resistance against synthetic insecticides, necessitating eco-friendly management strategies. The present study investigated the insecticidal potential of natural silica against P. xylostella and silica-mediated resistance in cauliflower under greenhouse conditions through pot culture experiments with three treatments, viz., natural silica, azadirachtin 1 % emulsifiable concentrate (EC) (neemazal) and an untreated control. Foliar application of natural
silica significantly reduced larval survival, recording 68.57 % mortality at 5 days after treatment (DAT), which was statistically comparable to neemazal (77.14 %). Natural silica-treated larvae showed reduced body size, cuticular abrasion, desiccation and eventual death. Biophysical studies using scanning electron microscopy (SEM) confirmed silica deposition in leaf tissues, reinforcing cell walls and inducing mandibular wear in larvae, thereby restricting feeding. Biochemical assays revealed that silica-treated plants exhibited elevated activities of defense enzymes such
as polyphenol oxidase (PPO), peroxidase (PO) and phenylalanine ammonia lyase (PAL), recording 0.19, 0.38 and 0.95 ΔOD min-1 g-1, respectively, along with higher phenolic content (0.71 g 100 g-1 fresh weight), indicating induction of systemic resistance. Safety assessment through a contact filter paper assay revealed minimal effects of silica on honey bee, Apis cerana indica (8.57 % mortality at 48 hr), lower than neemazal (14.29 %). These results demonstrate that natural silica can serve as a promising alternative to synthetic pesticides in controlling P. xylostella and can
function as a defensive component in integrated pest management by reinforcing induced defenses and enhancing plant resistance.

References

  1. 1. Deka MK, Kalita S. Effect of foliar application of silicic acid on biological parameters of Lipaphis erysimi (kaltenbach) and activity of plant defensive enzymes in rapeseed. Int J Trop Insect Sci. 2024;44:2685–94. https://doi.org/10.1007/s42690-024-01363-w
  2. 2. Bathoova M, Svubova R, Gimes L, Kostolani D, Slovakova L, Martinka M. The potential of silicon in crop protection against phloem feeding and chewing insect pests – a review. J Exp Bot. 2025;76:3912–26. https://doi.org/10.1093/jxb/eraf102
  3. 3. Alvarenga R, Moraes JC, Auad AM, Coelho M, Nascimento AM. Induction of resistance of corn plants to Spodoptera frugiperda (JE Smith, 1797) (Lepidoptera: Noctuidae) by application of silicon and gibberellic acid. Bull Entomol Res. 2017;107:527–33. https://doi.org/10.1017/S0007485316001176
  4. 4. Han Y, Lei W, Wen L, Hou M. Silicon-mediated resistance in a susceptible rice variety to the rice leaf folder, Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae). PLoS One. 2015;10:e0120557. https://doi.org/10.1371/journal.pone.0120557
  5. 5. Liang Y, Nikolic M, Bélanger R, Gong H, Song A. Silicon and insect pest resistance. In: Silicon in agriculture: from theory to practice. Springer; 2015. p. 197–207. https://doi.org/10.1007/978-94-017-9978-2_10
  6. 6. Raven JA. The transport and function of silicon in plants. Biol Rev. 1983;58:179–207. https://doi.org/10.1111/j.1469-185X.1983.tb00385.x
  7. 7. Hassan KM, Ajaj R, Abdelhamid AN, Ebrahim M, Hassan IF, Hassan FAS, et al. Silicon: a powerful aid for medicinal and aromatic plants against abiotic and biotic stresses for sustainable agriculture. Horticulturae. 2024;10:806. https://doi.org/10.3390/horticulturae10080806
  8. 8. Massey FP, Hartley SE. Physical defences wear you down: progressive and irreversible impacts of silica on insect herbivores. J Anim Ecol. 2009;78:281–91. https://doi.org/10.1111/j.1365-2656.2008.01472.x
  9. 9. Deren CW. Plant genotype, silicon concentration and silicon-related responses. In: Datnoff LE, Snyder GH, Korndörfer GH, editors. Studies in plant science. Elsevier; 2001. p. 149–58. https://doi.org/10.1016/S0928-3420(01)80012-4
  10. 10. Mitani N, Ma JF. Uptake system of silicon in different plant species. J Exp Bot. 2005;56:1255–61. https://doi.org/10.1093/jxb/eri121
  11. 11. Keeping MG, Reynolds OL. Silicon in agriculture: new insights, new significance and growing application. Ann Appl Biol. 2009;155:153–4. https://doi.org/10.1111/j.1744-7348.2009.00358.x
  12. 12. Reynolds OL, Padula MP, Zeng R, Gurr GM. Silicon: potential to promote direct and indirect effects on plant defense against arthropod pests in agriculture. Front Plant Sci. 2016;7:744. http://dx.doi.org/10.3389/fpls.2016.00744
  13. 13. Hall CR, Waterman JM, Vandegeer RK, Hartley SE, Johnson SN. The role of silicon in antiherbivore phytohormonal signalling. Front Plant Sci. 2019;10:1132. https://doi.org/10.3389/fpls.2019.01132
  14. 14. Rao SRK, Lal OP. Seasonal incidence of mustard aphid, Lipaphis erysimi (Kalt.) and diamondback moth, Plutella xylostella Linn., on cabbage. J Insect Sci. 2005;18:106.
  15. 15. Jakhar M, Singh SK, Choudhary AL. Evaluate of bio-efficacy on different insecticides against diamondback moth on cauliflower. J Entomol Zool Stud. 2019;7:1077–81.
  16. 16. Shoaib A, Elabasy A, Waqas M, Lin L, Cheng X, Zhang Q, et al. Entomotoxic effect of silicon dioxide nanoparticles on Plutella xylostella (L.) (Lepidoptera: Plutellidae) under laboratory conditions. Toxicol Environ Chem. 2018;100:80–91. https://doi.org/10.1080/02772248.2017.1387786
  17. 17. Kim V. Formalin-aceto-alcohol (FAA) solution for killing, fixing and pickling botanical specimen. Los Baños, Philippines: Institute of Biological Sciences; 2019. http://dx.doi.org/10.13140/RG.2.2.12088.80649
  18. 18. Alegre ALI, Torres MAJ, Demayo CG. Determination of host associated variability in the shape of the mandible of white rice stem borer Scirpophaga innotata (Lepidoptera: Pyralidae). Adv Environ Sci. 2011;3:53–67.
  19. 19. Augustin MA, Ghazali HM, Hashim H. Polyphenoloxidase from guava (Psidium guajava L.). J Sci Food Agric. 1985;36:1259–65. https://doi.org/10.1002/jsfa.2740361209
  20. 20. Hammerschmidt R, Nuckles EM, Kuć J. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol Plant Pathol. 1982;20:73–82. https://doi.org/10.1016/0048-4059(82)90025-X
  21. 21. Rao PVS, Towers GHN. L-phenylalanine ammonia-lyase (Ustilagobordei). Methods Enzymol. 1970;17A:581–5.
  22. 22. Malik CP, Singh M. Plant enzymology and histo-enzymology. New Delhi: Kalyani Publishers; 1980.
  23. 23. Mohan C, Sridharan S, Subramanian KS, Natarajan N, Nakkeeran S. Effect of nanoemulsion of hexanal on honey bees (Hymenoptera; Apidae). J Entomol Zool Stud. 2017;5:1415–8.
  24. 24. Telles CC, Freitas LM de, Junqueira AMR, Mendonça RS de. Silicon application as an auxiliary method to control diamondback moth in cabbage plants. Hortic Bras. 2019;37:390–4. https://doi.org/10.1590/S0102-053620190405
  25. 25. Cardoso CP, da Silva Nunes G, da Silva JLF, de Mello Prado R, de Farias Guedes VH, de Bortoli SA, et al. Silicon and boron on cauliflower induce attractiveness and mortality in Plutella xylostella. Pest Manag Sci. 2022;78:5432–6. https://doi.org/10.1002/ps.7165
  26. 26. Rizwan M, Atta B, Rizwan M, Sabir AM, Tahir M, Sabar M, et al. Silicon plays an effective role in integrated pest management against rice leaf folder Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae). Pak J Zool. 2021;54:1–7. https://dx.doi.org/10.17582/journal.pjz/20200330090344
  27. 27. Ferreira RS, Moraes JC. Silicon influence on resistance induction against Bemisia tabaci biotype B (Genn.) (Hemiptera: Aleyrodidae) and on vegetative development in two soybean cultivars. Neotrop Entomol. 2011;40:495–500. https://doi.org/10.1590/S1519-566X2011000400014
  28. 28. Calatayud PA, Njuguna E, Mwalusepo S, Gathara M, Okuku G, Kibe A, et al. Can climate-driven change influence silicon assimilation by cereals and hence the distribution of lepidopteran stem borers in East Africa? Agric Ecosyst Environ. 2016;224:95–103. https://doi.org/10.1016/j.agee.2016.03.040
  29. 29. Ahmad N, Ansari MS, Hasan F. Effects of neem-based insecticides on Plutella xylostella (Linn.). Crop Prot. 2012;34:18–24. https://doi.org/10.1016/j.cropro.2011.12.010
  30. 30. Benelli G, Canale A, Toniolo C, Higuchi A, Murugan K, Pavela R, et al. Neem (Azadirachta indica): towards the ideal insecticide? Nat Prod Res. 2017;31:369–86. https://doi.org/10.1080/14786419.2016.1214834
  31. 31. Shah FM, Razaq M, Ali Q, Shad SA, Aslam M, Hardy IC. Field evaluation of synthetic and neem-derived alternative insecticides in developing action thresholds against cauliflower pests. Sci Rep. 2019;9:7684. https://doi.org/10.1038/s41598-019-44080-y
  32. 32. Gatarayiha MC, Laing MD, Miller RM. Combining applications of potassium silicate and Beauveria bassiana to four crops to control two spotted spider mite, Tetranychus urticae Koch. Int J Pest Manag. 2010;56:291–7. https://doi.org/10.1080/09670874.2010.495794
  33. 33. Yang L, Han Y, Li P, Li F, Ali S, Hou M. Silicon amendment is involved in the induction of plant defense responses to a phloem feeder. Sci Rep. 2017;7:4232. https://doi.org/10.1038/s41598-017-04571-2
  34. 34. Kvedaras OL, Keeping MG. Silicon impedes stalk penetration by the borer Eldana saccharina in sugarcane. Entomol Exp Appl. 2007;125(1):103–10. https://doi.org/10.1111/j.1570-7458.2007.00604.x
  35. 35. Handley R, Ekbom B, Ågren J. Variation in trichome density and resistance against a specialist insect herbivore in natural populations of Arabidopsis thaliana. Ecol Entomol. 2005;30:284–92.
  36. 36. Kumar S, Bhandari D. Silicon: as a potential source to pests management. Int J Trop Insect Sci. 2022;42:3221–34. https://doi.org/10.1007/s42690-022-00869-5
  37. 37. Goussain MM, Moraes JC, Carvalho JG, Nogueira NL, Rossi ML. Effect of silicon application on corn plants upon the biological development of the fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). Neotrop Entomol. 2002;31:305–10. https://doi.org/10.1590/S1519-566X2002000200019
  38. 38. Dos Santos MC, Junqueira MRR, de Sá VGM, Zanúncio J, Serrão J. Effect of silicon on the morphology of the midgut and mandible of tomato leafminer Tuta absoluta (Lepidoptera: Gelechiidae) larvae. Invertebr Surviv J. 2015;12:158–65.
  39. 39. Qi X, Xue X, Wang Z, Li S, Zhang Z, Han Y, et al. Silicon application enhances wheat defence against Sitobion avenae F. by regulating plant physiological-biochemical responses. Basic Appl Ecol. 2024;74:13–23. https://doi.org/10.1016/j.baae.2023.11.003
  40. 40. Costa RR, Moraes JC, DaCosta RR. Feeding behaviour of the greenbug Schizaphis graminum on wheat plants treated with imidacloprid and/or silicon. J Appl Entomol. 2011;135:115–20. https://doi.org/10.1111/j.1439-0418.2010.01526.x
  41. 41. Zhang SZ, Hua BZ, Zhang F. Induction of the activities of antioxidative enzymes and the levels of malondialdehyde in cucumber seedlings as a consequence of Bemisia tabaci (Hemiptera: Aleyrodidae) infestation. Arthropod Plant Interact. 2008;2:209–13.
  42. 42. Rodrigues FÁ, McNally DJ, Datnoff LE, Jones JB, Labbé C, Benhamou N, et al. Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance. Phytopathology. 2004;94:177–83. https://doi.org/10.1094/PHYTO.2004.94.2.177
  43. 43. Rémus-Borel W, Menzies JG, Bélanger RR. Silicon induces antifungal compounds in powdery mildew-infected wheat. Physiol Mol Plant Pathol. 2005;66:108–15. https://doi.org/10.1016/j.pmpp.2005.05.006
  44. 44. Fauteux F, Rémus-Borel W, Menzies JG, Bélanger RR. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett. 2005;249:1–6. https://doi.org/10.1016/j.femsle.2005.06.034
  45. 45. Johnson SN, Hartley SE. Elevated carbon dioxide and warming impact silicon and phenolic-based defences differently in native and exotic grasses. Glob Chang Biol. 2018;24:3886–96. https://doi.org/10.1111/gcb.13971
  46. 46. Paul PK, Sharma PD. Azadirachta indica leaf extract induces resistance in barley against leaf stripe disease. Physiol Mol Plant Pathol. 2002;61:3–13. https://doi.org/10.1006/pmpp.2002.0412
  47. 47. Guleria S, Kumar A. Azadirachta indica leaf extract induces resistance in sesame against Alternaria leaf spot disease. J Cell Mol Biol. 2006;5:81–6.
  48. 48. Pretali L, Bernardo L, Butterfield TS, Trevisan M, Lucini L. Botanical and biological pesticides elicit a similar induced systemic response in tomato (Solanum lycopersicum) secondary metabolism. Phytochemistry. 2016;130:56–63. https://doi.org/10.1016/j.phytochem.2016.04.002
  49. 49. Modafferi A, Ricupero M, Mostacchio G, Latella I, Zappala L, Palmeri V, et al. Bioactivity of Allium sativum essential oil-based nanoemulsion against Planococcus citri and its predator Cryptolaemus montrouzieri. Ind Crops Prod. 2024;208:117837. https://doi.org/10.1016/j.indcrop.2023.117837
  50. 50. Demirozer O, Bulus IY, Yanik G, Uzun A, Gosterit A. Does diatomaceous earth (DE) cause mortality on Apis mellifera and Bombus terrestris? J Apic Res. 2024;63:778–84. https://doi.org/10.1080/00218839.2022.2146343
  51. 51. Challa GK, Firake DM, Behere GT. Bio-pesticide applications may impair the pollination services and survival of foragers of honey bee, Apis cerana Fabricius in oilseed brassica. Environ Pollut. 2019;249:598–609. https://doi.org/10.1016/j.envpol.2019.03.048
  52. 52. Ratnakar V, Rao SRK, Sridevi D, Vidyasagar B. Contact toxicity of certain conventional insecticides to European honey bee, Apis mellifera Linnaeus. Int J Curr Microbiol Appl Sci. 2017;6:3359–65. https://doi.org/10.20546/ijcmas.2017.607.401
  53. 53. Schmutterer H. Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annu Rev Entomol. 1990;35:271–97.

Downloads

Download data is not yet available.