Agrobacterium-mediated genetic transformation of date palm (Phoenix dactylifera L.) cultivar "Khalasah" via somatic embryogenesis
DOI:
https://doi.org/10.14719/pst.2015.2.3.119Keywords:
Date palm, Phoenix dactylifera, Agrobacterium tumefaciens, genetic transformation, somatic embryogenesis, kanamycin resistanceAbstract
In present investigation, an efficient Agrobacterium- mediated genetic transformation was successfully carried out for a well known date palm (Phoenix dactylifera L.) cultivar “Khalasah” using matured somatic embryos. Somatic embryogenesis was initiated from offshoot’s shoot tips of date palm cultivar. For genetic transformation, morphologically advanced matured somatic embryos developed on MS medium fortified with TDZ (1.0 mg/l) were co-cultured with A. tumefaciens strain LBA 4404 harboring binary vector pBI 121, containing uidA (GUS) and npt II genes and incubated for 4 days and later it was (somatic embryos) inoculated on germinating and plantlet conversion MS medium supplemented with BAP (0.75 mg/l) + kanamycin (100 mg/l). Prolific shoots developed from putatively transformed matured embryos showed 47.5 % transformation efficiency. A large number of transgenic plants were obtained and later established in black hard plastic bags. A strong GUS activity was detected in the putatively transformed plant leaves by histochemical assay and, the integration of uidA (GUS) and npt II genes into transgenic plants was confirmed by polymerase chain reaction (PCR) and Southern hybridization analysis. The established transformation protocol allows effective and quick regeneration via somatic embryogenesis, and it would be highly valuable for existing date palm orchards and improving their productivity.
Downloads
References
Abalaka, M. E., and A. Mohammed. 2011. Agrobacterium transformation: a boost to agricultural biotechnology. Journal of Medical Genetic Genomics 3: 126–130
Anonymous. 1969. The wealth of India: a dictionary of Indian raw materials and industrial products, vol. VIII, New Delhi CSIR, pp. 303–305.
AlKhayri, J. M. 2001. Optimization of biotin and thiamine requirements for somatic embryogenesis of date palm (Phoenix dactylifera L.). In Vitro Cell Developmental Biology Plant 37: 453–456. http://dx.doi.org/10.1007/s11627-001-0079-x
Al-Shahib, W. and R. J. Marshall. 2003. The fruit of the date palm: its possible use as the best food for the future? International Journal Food Science and Nutrition 54: 247-259. http://dx.doi.org/10.1080/09637480120091982
Al Khayri, J. M. 2003. In vitro germination of somatic embryos in date palm: effect of auxin concentration and strength of MS salts. Current Science, 84:5–1 0.
Barreveld, W. H. 1993. Date Palm Products. FAO Agricultural Services Bulletin No. 101, Food and Agriculture Organization of the United Nations, Rome. www.fao.org/docrep/t0681e/t0681e00.htm
Bonga, J. M. 1982. Clonal propagation of mature trees: problems and possible solutions. In: Bonga, JM. (Ed.), Tissue Culture in Forestry. Martinus Nijhoff Publ, Dordrecht, pp. 249–271. http://dx.doi.org/10.1007/978-94-017-3538-4
Bhansali, R., R. Kaul, and H. Dass. 1988. Mass cloning of date palm plantlets through repetitive somatic embryogenesis. Journal of Plant Anatomy and Morphology, 5: 73–79.
Bekheet, S. A., H. S. Taha and M. M. Saker. 2001. Factors affecting in vitro multiplication of date palm. Biologia Plantarum, 44: 431–433. http://dx.doi.org/10.1023/A:1012423601467
Bekheet. S. A., H. S. Taha, M. M. Saker and H. A. Moursy. 2002. A synthetic seed system of date palm through somatic embryogenesis encapsulation. Annual Agricultural Science Ain-Shams University, Cairo 47: 325–337.
Birch, R. G. 1997. Plant transformation: problems and strategies for practical application. Annual Review of Plant Physiology and Plant Molecular Biology 48: 297–326. http://dx.doi.org/10.1146/annurev.arplant.48.1.297
Carpenter, J. B. and L. J. Klotz. 1966. Diseases of the date palm. Date Growers Instant Report 43: 15 –21.
Cervera, M., J. A. Pina, J. Juarez, L. Navarvo and L. Pena. 1998. Agrobacterium-mediated transformation of citrange: factors affecting transformation and regeneration. Plant Cell Report 18: 271-278. http://dx.doi.org/10.1007/s002990050570
Cheng, M., J. E. Fry, S. Peng, H. Zou, R. Hironaka, D. R. Duncan, T. W. Connor and Y. dan Wan. 1997. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiology 115: 971–980.
Chafe, P. D. J., T. Lee and J. S. Shore. 2015. Development of a genetic transformation system for Distylous turnera Joelii (Passifloraceae) and characterization of a self-compatible mutant. Plant Cell, Tissue and Organ Culture 120: 507-517. http://dx.doi.org/10.1007/s11240-014-0617-y
Dransfield, J., N. W. Uhl, C. B. Asmussen and W. Baker. 2008. Genera palmarum. The evolution and classification of palms. Royal botanic gardens, Kew.
Djerbi, M. 1988. Les maladies du palmier dattier. Projet régional de lutte contre le Bayoud, FAO, Alger.
Dhar, U. and Joshi, M. 2005. Efficient plant regeneration protocol through callus for Saussurea obvallata (DC) Edgew. (Asteraceae): Effects of explant type, age and plant growth regulators. Plant Cell Report 24: 195–200. http://dx.doi.org/10.1007/s00299-005-0932-1
Doyle, J. J. and J. L. Doyle. 1990. A rapid total DNA preparation procedure for fresh plant tissue. Focus 12: 13-15.
Franklin, G. and S. G. Lakshmi. 2003. Agrobacterium tumefaciens mediated transformation of egg plant (Solanum melongena L.) using root explants. Plant Cell, 21: 549-554.
Ghanti, S. K., K. G. Sujata, S. M. Rao and P. B. K. Kishor. 2010. Direct somatic embryogenesis and plant regeneration from immature explants of chickpea. Biologia Plantatum, 54: 121–125. http://dx.doi.org/10.1007/s10535-010-0018-y
Gheysen, G., G. Angenon and M. Van Montagu. 1998. Agrobacterium-mediated plant transformation: a scientifically intriguing story with significant applications. In: Lindsey K (ed.) Transgenic plant research. Harwood Academic, Amsterdam, pp 1–33.
Godwin, I., G. Todd, B. Ford-Lloyd and H. J. Newbury. 1991. The effects of acetosyringone and pH on Agrobacterium mediated transformation vary according to plant species. Plant Cell Report 9: 671-675. http://dx.doi.org/10.1007/BF00235354
Han, K. H., R. Meilan, C. Ma and S. H. Strauss 2000. An Agrobacterium tumefaciens transformation protocol effective on a variety of cottonwood hybrids (genus Populus). Plant Cell Report 19: 315-320. http://dx.doi.org/10.1007/s002990050019
Hiei, Y., T. Komari and T. Kubo. 1997. Transformation of rice mediated by Agrobacterium tumefaciens. Plant molecular Biology 35: 205-218. http://dx.doi.org/10.1023/A:1005847615493
Ishida, Y., H. Saito, S. Ohta, Y. Hiei, T. Komari and T. Kumashiro. 1996. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnology 14: 745–750. http://dx.doi.org/10.1038/nbt0696-745
Junaid, A., S. A. Khan, A. J. Cheruth, A. Mujib, M. P. Sharma and P. S. Srivastava. 2011a. Somatic embryogenesis, scanning electron microscopy, histology and biochemical analysis at different developing stages of embryogenesis in six date palm (Phoenix dactylifera L.) cultivars. Saudi Journal of Biological Sciences, 18: 369–380. http://dx.doi.org/10.1016/j.sjbs.2011.06.002
Junaid, A., A. Mujib, S. Fatima and M. P. Sharma. 2008. Cultural conditions affect somatic embryogenesis in Catharanthus roseus L. (G.) Don. Plant Biotechnology Report, 2: 179–189. http://dx.doi.org/10.1007/s11816-008-0060-9
Junaid, A. and S. A. Khan. 2009. In vitro micropropagation of Khalasah date palm (Phoenix dactylifera L.). An important fruit plant. Journal of Fruit and Ornamental Plant Research, 17 (1): 5–17.
Junaid, A., S. H. Khan and S. A. Khan. 2011b. Quantification of water soluble vitamins in six date palm (Phoenix dactylifera L.) cultivar's fruits growing in Dubai, United Arab Emirates, through high performance liquid chromatography. Saudi Journal of Chemical Society 17: 9–16. http://dx.doi.org/10.1016/j.jscs.2011.02.015
Junaid, A., S. H. Khan and S. A. Khan. 2011c. HPLC analysis of fat soluble vitamins in in vitro and ex vitro germinated chickpea (Cicer arietinum L.). Saudi Journal of Chemical Society, 2: 125–129.
Junaid, A., M. P. Sharma and P. S. Srivastava. 2012a. Somatic Embryogenesis and Genetic transformation in plants. Narosa Publishing House, New Delhi, pp 262.
Junaid, A., M. P. Sharma and P. S. Srivastava. 2012b. Somatic Embryogenesis and Gene expression. Narosa Publishing House, New Delhi, pp 280.
Kumlehn, J., L. Serazetdinov, G. Hense, D. Becker and H. Loerz. 2006. Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnology Journal 4: 251–261. http://dx.doi.org/10.1111/j.1467-7652.2005.00178.x
Laville, E. 1973. Les maladies du dattier. In: Munier P (ed.) Le palmier dattier. G.P. Maisonneuve and Larose, Paris, pp 95–108.
Li XQ, C. N. Liu, S. W. Ritchie, J. Peng, S. B. Gelvin and T. K. Hodges. 1992. Factors influencing Agrobacterium-mediated transient expression of gusA in rice. Plant Molecular Biology, 20: 1037-1048. http://dx.doi.org/10.1007/BF00028891
Li, F, M. Li and C. Zhan. 2015. A reliable and high- efficiency Agrobacterium tumefaciens- mediated transformation system of Pogonatherum paniceum embryogenic callus using GFP as a reporter gene. Plant Cell, Tissue and Organ Culture 120: 155-165. http://dx.doi.org/10.1007/s11240-014-0589-y
Liu, J, X. Xu, Q. Xu, S. Wang and J. Xu. 2014. Transgenic tobacco plants expressing PicW gene from Picea wilsonii exhibit enhanced freezing tolerance. Plant Cell, Tissue and Organ Culture 111: 391-400. http://dx.doi.org/10.1007/s11240-014-0491-7
Louvet, J. and G. Toutain. 1973. Recherches sur les fusarioses VIII. Nouvelles observations sur la fusariose du palmier dattier et précisions concernant la lutte. Annual Phytopathology, 4: 35–52.
Malençon, G. 1934. Nouvelles observations concernant l’étiologie du Bayoud. Comptes Rendus de l'Académie des Sciences 19: 1259–1262.
Manickavasagam, M., A. Ganapathi, V. R. Anbazhagan, B. Sudhakar, N. Selvaraj, A. Vasudevan and S. Kasthurirengan. 2004. Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharam species hybrids) using axillary buds. Plant Cell Report 23: 134-143. http://dx.doi.org/10.1007/s00299-004-0794-y
Palla, K. J. and P. M. Pijut. 2015. Agrobacterium-mediated genetic transformation of Fraxinus americana hypocotyls. Plant Cell, Tissue and Organ Culture 120: 631-641. http://dx.doi.org/10.1007/s11240-014-0630-1
Ramamoorthy, R. and P. P. Kumar. 2012. A simplified protocol for genetic transformation of switchgrass (Panicum virgatum L.). Plant Cell Reports 31: 1923-1931. http://dx.doi.org/10.1007/s00299-012-1305-1
Saini, R. and P. K. Jaiwal. 2007. Agrobacterium tumefaciens-mediated transformation of blackgram: an assessment of factors influencing the efficiency of uidA gene transfer. Biologia Plantarum 51: 69-74. http://dx.doi.org/10.1007/s10535-007-0014-z
Saker, M., S. Adawy, A. Mohamed and H. El-Itriby. 2006a. Monitoring of cultivar identity in tissue culture derived date palms using RAPD and AFLP analysis. Biologia Plantarum 50: 198–204. http://dx.doi.org/10.1007/s10535-006-0007-3
Saker, M., A. Mai, M. H. Allam Abd EL-Zaher and H. G. Amina. 2006b. RAPD analysis of semi-dry Egyptian date palm during somatic embryogenesis. First Egyptian-Jordanian conference on biotechnology, 11–14 Dec 2006, pp 92–103.
Saker, M., M. A. Allam and A. H. Goma. 2007b. Optimization of some factors affecting genetic transformation of semi-dry Egyptian date palm cultivar (Sewi) using particle bombardment. Journal of Genetic Engineering and Biotechnology 5: 1–6.
Saker, M., S. Bekheet, H. S. Taha, A. S. Fahmy and H. A. Moursy. 2000. Detection of somaclonal variations in tissue culture-derived date palm plants using isozyme analysis and RAPD fingerprints. Biologia Plantarum 43: 347–351. http://dx.doi.org/10.1023/A:1026755913034
Saker, M., H. Ghareeb and J. Kumlehn. 2009. Factors influencing transient expression of Agrobacterium mediated transformation of GUS gene in embryogenic callus of date palm. Advanced Horticultural Sciences 23: 150–157.
Saker, M. and H. A. Ghareeb. 2007a. Factors influencing transient expression of Agrobacterium–mediated transformation of GUS gene in embryogenic callus of date palm. Fourth symposium on date palm in Saudi Arabia. King Faisal Univ, Al-Hassa, 5–8 May 2007.
Saker, M. and H. Moursy. 2003. Transgenic date palm: a new era in date palm biotechnology. In: Proceeding of the international conference on date palm, King Saud University, Qaseem, Sept, 16–19.
Saker, M. M. 2011. Transgenic Date Palm. S. M. Jain et al. (Eds.), Date Palm Biotechnology, Springer Science+Business Media B.V. 2011, 631-650. http://dx.doi.org/10.1007/978-94-007-1318-5_30
Shaheen, M. A. 1990. Propagation of date palm through tissue culture: a review and an interpretation. Annual Agricultural Sciences, Ain-Shams University, Cairo, 35: 895–909.
Shrawat, A. K. and A. G. Good. 2011. Agrobacterium tumefaciens- mediated genetic transformation of cereals using immature embryos. Methods of Molecular Biology 710: 355-72. http://dx.doi.org/10.1007/978-1-61737-988-8_24
Stachel, S. E., E. Messens, M. V. Montagu and P. Zambryski. 1985. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318: 624-629. http://dx.doi.org/10.1038/318624a0
Stam, M., J. M. Mol and J. M. Kooter. 1997. The Silence of Genes in Transgenic Plants. Ann Bot 79: 3-12. http://dx.doi.org/10.1006/anbo.1996.0295
Tingay, S., D. McElroy, R. Kalla, S. Fieg, M. Wang, S. Thornton and R. Brettell. 1997. Agrobacterium tumefaciens- mediated barley transformation. Plant Journal 11: 1369–1376. http://dx.doi.org/10.1046/j.1365-313X.1997.11061369.x
Tisserat,. B. 1982. Factors involved in the production of plantlets from date palm callus cultures. Euphytica 31: 201–214. http://dx.doi.org/10.1007/BF00028323
Toutain, G. 1967. Le palmier dattier: culturer et production. Alawam, 15: 37–45
Van Wordragen, M. F. and H. J. M. Dons. 1992. Agrobacterium tumefaciens mediated transformation of recalcitrant crops. Plant Molecular Biology Report 10: 12-36. http://dx.doi.org/10.1007/BF02669262
Xiao, K., C. Zhang, M, Harrison and Z. Y. Wang. 2005. Isolation and characterization of a novel plant promoter that directs strong constitutive expression of transgenes in plants. Molecular Breeding 15: 221-231. http://dx.doi.org/10.1007/s11032-004-5679-9
Vyawahare, N., R. Pujari, A. Khsirsagar, D. Ingawale, M. Patil and V. Kagathara. 2009. Phoenix dactylifera: An update of its indegenous uses, phytochemistry and pharmacology. International Journal of Pharmacology 7: 10-15.
Zaid, A. and H. Hughes. 1995. Water loss and polyethylene glycol-mediated acclimatization of in vitro grown seedlings of 5 cultivars of date palm (Phoenix dactylifera L.) plantlets. Plant Cell Report 14: 385–388. http://dx.doi.org/10.1007/BF00238602
Zohary, D. and M. Hopf. 2000. Domestication of Plants in the Old World: The Origin and Spread of Cultivated Plants in West Asia, Europe, and the Nile Valley, 3rd edition, pp 165-169, Oxford University Press, Oxford.
Downloads
Published
How to Cite
Issue
Section
License
Copyright and Licence details of published articles
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Open Access Policy
Plant Science Today is an open access journal. There is no registration required to read any article. All published articles are distributed under the terms of the Creative Commons Attribution License (CC Attribution 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://creativecommons.org/licenses/by/4.0/). Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).