Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Characterization and detoxification of foot patch by gelatin - agar- based phase hydrogel

DOI
https://doi.org/10.14719/pst.11901
Submitted
22 September 2025
Published
29-01-2026
Versions

Abstract

Hydrogels made of gelatin and agar have attracted considerable interest for a multitude of pharmaceutical and biomedical applications due to their biodegradability, biocompatibility and controlled release of bioactive materials. These biopolymers include gelatin, a protein derived from collagen and agar, a polysaccharide obtained from red algae; they are used synergistically to manufacture hydrogels with improved mechanical and swelling properties. Investigation of the properties of these hydrogels is essential for describing their structure and function. Infrared Spectroscopy, particularly Fourier Transform Infrared Spectroscopy (FTIR), is commonly used to detect functional groups in the hydrogel matrix. Secondary electron imaging by Scanning Electron Microscopy (SEM) is used in determining the topographical images of the hydrogels. The thermal stability of the hydrogels is determined by conducting Thermo Gravimetric Analysis (TGA). Ultraviolet-Visible (UV-Vis) Spectroscopy is used to determine the extent of L-ascorbic acid immobilization in the hydrogel network. The absorption spectra can identify the drug at those wavelengths and determine the drug loading and release profile in the hydrogel system. This study aimed to develop and characterize gelatin-agar-based hydrogels for potential drug delivery applications, highlighting their structural, thermal and functional properties through comprehensive physicochemical analyses.

References

  1. 1. Zambroni ME, Bertone PA, Cabral AL, Boatti AS, Romanini SV, Martínez SR, et al. Easy-to-apply hydrogel patch for field treatment and monitoring of equine wounds. Gels. 2025;11:328. https://doi.org/10.3390/gels11050328
  2. 2. Tiwari S, Goldmann L, Lübke J, Prucker O, Martin G, Schlunck G, et al. Attachment of hydrogel patches to eye tissue through gel transfer using flexible foils. ACS Appl Mater Interfaces. 2025;17(6):8849–61. https://doi.org/10.1021/acsami.4c15089
  3. 3. Zawawi NA, Maarof M, Fadilah NIM, Hao DLQ, Tabata Y, Fauzi MB. Hybrid adhesive hydrogel patch containing genipin-crosslinked gelatin-hyaluronic acid for future use in atopic dermatitis. J Funct Biomater. 2025;16:195. https://doi.org/10.3390/jfb16060195
  4. 4. Ahuja S, Fidai RA. Fabrication of copper nano/honey loaded polymeric composite with microbial activity. Res J Pharm Technol. 2023;16(11):5400–405. https://doi.org/10.52711/0974-360X.2023.00874
  5. 5. Ahuja S, Sinojia A. Versatile application of polymeric gel using gelatin polymer. Res J Pharm Technol. 2024;17(4):1559–64. https://doi.org/10.52711/0974-360X.2024.00246
  6. 6. Ross KA, Pyrak-Nolte LJ, Campanella OH. The effect of mixing conditions on the material properties of an agar gel-microstructural and macrostructural considerations. Food Hydrocoll. 2006;20(1):79–87. https://doi.org/10.1016/j.foodhyd.2005.01.007
  7. 7. Singh VK, Sagiri SS, Pal K, Khade SM, Pradhan DK, Bhattacharya MK. Gelatin-carbohydrate phase-separated hydrogels as bioactive carriers in vaginal delivery: Preparation and physical characterizations. J Appl Polym Sci. 2014;131:40445. https://doi.org/10.1002/app.40445
  8. 8. Firoozmand H, Rousseau D. Microstructure and elastic modulus of phase-separated gelatin–starch hydrogels containing dispersed oil droplets. Food Hydrocoll. 2013;30(1):333–42. https://doi.org/10.1016/j.foodhyd.2012.06.010
  9. 9. Echave MC, Sánchez P, Pedraz JL, Orive G. Progress of gelatin-based 3D approaches for bone regeneration. J Drug Deliv Sci Technol. 2017;41:292–302. https://doi.org/10.1016/j.jddst.2017.04.012
  10. 10. Hill E, Boontheekul T, Mooney DJ. Designing scaffolds to enhance transplanted myoblast survival and migration. Tissue Eng. 2006;12(5):1295–304. https://doi.org/10.1089/ten.2006.12.1295
  11. 11. Bajpai SK, Chand N, Ahuja S, Roy MK. Curcumin/cellulose microcrystals/chitosan films: Water absorption behavior and in vitro cytotoxicity. Int J Biol Macromol. 2015;75:239–47. https://doi.org/10.1016/j.ijbiomac.2015.01.038
  12. 12. Bajpai SK, Daheriya P, Ahuja S, Gupta K. Water absorption and antimicrobial behavior of physically cross-linked poly(vinyl alcohol)/carrageenan films loaded with minocycline. Des Monomers Polym. 2016;19(7):630–42. https://doi.org/10.1080/15685551.2016.1187444
  13. 13. Bajpai SK, Chand N, Ahuja S, Roy MK. Vapor-induced phase inversion technique to prepare chitosan/microcrystalline cellulose composite films: Synthesis, characterization and moisture absorption study. Cellulose. 2015;22(6):3825–37. https://doi.org/10.1007/s10570-015-0775-z
  14. 14. Allo JD, Pakan PD, Setiawan IMB, Iswaningsih. Formulation and antibacterial test of Moringa oleifera seed extract gel preparations on Staphylococcus aureus. Int J Drug Deliv Technol. 2025;15(1):86–90. https://doi.org/10.25258/ijddt.15.1.11
  15. 15. Kondapure AA, Koumaravelou K. Antiinflammatory activity of Arquita ancashiana nanoemulgel: in vitro and in vivo evaluation. Int J Drug Deliv Technol. 2025;15(1):271–78. https://doi.org/10.25258/ijddt.15.1.38
  16. 16. Patil AR, Maru AD. Phytochemical characterization and evaluation of antioxidant, antiinflammatory, antibacterial and antifungal activities of Nigella sativa-based nanoemulgel (NEGIS). Int J Drug Deliv Technol. 2025;15(1):230–37. https://doi.org/10.25258/ijddt.15.1.32
  17. 17. Bajpai SK, Chand N, Ahuja S, Roy MK. Investigation of curcumin release from chitosan/cellulose microcrystals (CMC) antimicrobial films. Int J Biol Macromol. 2015;79:440–48. https://doi.org/10.1016/j.ijbiomac.2015.05.012
  18. 18. Bajpai SK, Ahuja S, Chand N, Bajpai M. Nanocellulose-dispersed chitosan film with Ag NPs/curcumin: An in vivo study on albino rats for wound dressing. Int J Biol Macromol. 2017;104:1012–19. https://doi.org/10.1016/j.ijbiomac.2017.06.096
  19. 19. Pal K, Banthia AK, Majumdar DK. Preparation and characterization of polyvinyl alcohol–gelatin hydrogel membranes for biomedical applications. AAPS PharmSciTech. 2007;8(1):142–46. https://doi.org/10.1208/pt080121
  20. 20. Pourjavadi A, Farhadpour B, Seidi FS. Synthesis and investigation of swelling behavior of new agar-based super absorbent hydrogel as a candidate for agrochemical delivery. J Polym Res. 2009;16(6):655–65. https://doi.org/10.1007/s10965-009-9270-2
  21. 21. Yang H, Irudayaraj J, Paradkar MM. Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy. Food Chem. 2005;93(1):25–32. https://doi.org/10.1016/j.foodchem.2004.08.039
  22. 22. Bajpai SK, Ahuja S, Daheriya P, Bajpai M. A green approach to prepare Ag NPs-loaded IC/PVA polymeric film for antimicrobial applications. J Macromol Sci A. 2017;54(11):835–42. https://doi.org/10.1080/10601325.2017.1337470
  23. 23. Shiinoki Y, Yano T. Viscoelastic behavior of an agar–gelatin mixture gel as a function of its composition. Food Hydrocoll. 1986;1(2):153–61.
  24. 24. Atole DM, Rajput HH. Ultraviolet spectroscopy and its pharmaceutical applications-A brief review. Asian J Pharm Clin Res. 2017;11(2):59–63. https://doi.org/10.1016/j.fpsl.2020.100583
  25. 25. Najwa INA, Guerrero P, de la Caba K, Hanani ZN. Physical and antioxidant properties of starch/gelatin films incorporated with Garcinia atroviridis leaves. Food Packag Shelf Life. 2020;26:100583. https://doi.org/10.1016/j.fpsl.2020.100583
  26. 26. Fang CC, Zhang Y, Qi SY, Liao YC, Li YY, Wang P. Influence of structural design on mechanical and thermal properties of jute reinforced polylactic acid (PLA) laminated composites. Cellulose. 2020;27:9397–407. https://doi.org/10.1007/s10570-020-03436-8

Downloads

Download data is not yet available.