Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

In silico and in vitro study of insecticidal effect of oil extracted from hemp seeds against Tribolium castaneum (Herbst)

DOI
https://doi.org/10.14719/pst.11950
Submitted
24 September 2025
Published
29-01-2026
Versions

Abstract

The protection of stored products in Morocco still relies heavily on synthetic insecticides, posing risks to human health and the environment and contributing to the emergence of resistance to these chemicals. This study explored the insecticidal potential of vegetable oils extracted from the seeds of three Cannabis sativa L. varieties (Beldia (Bld), Kherdala (Krd) and Critical (Crt) against Tribolium castaneum (Herbst) , a major pest of stored grains. The chemical composition of the oils was characterised using FTIR and GC-MS, revealing a predominance of fatty acids, particularly linoleic acid (38.97-50.11 %) and oleic acid (10.82–27.26 %). Biological tests showed significant insecticidal activity by contact, with cumulative mortality dependent on dose and exposure time. The Krd variety exhibited the highest toxicity (LD50 = 3.75 mL kg-1), followed by Bld (5.61 mL kg-1) and Crt (7.39 mL kg-1). Furthermore, oils from the Bld and Crt varieties demonstrated strong repellent properties, reaching 91.67 % and 68 %, respectively, at 0.63 µL/cm², while Krd showed weak repellency. Molecular docking analyses suggest that certain major fatty acids, particularly linoleic and oleic acids, interact strongly with acetylcholinesterase, a classic target enzyme for insecticides, reinforcing the hypothesis of their active role in the observed insecticidal effects. These results highlight the potential of C. sativa seed oils as effective and safe bioinsecticides, offering a sustainable alternative to chemical insecticides for the post-harvest protection of cereals in Morocco.

References

  1. 1. Bishaw Z, Yigezu Y, Niane AA, Telleria R, Najjar D. Political economy of the wheat sector in Morocco: seed systems, varietal adoption and impacts. Beirut, Lebanon: International Center for Agricultural Research in the Dry Areas; 2018.
  2. 2. Arrisueno G, Gada A, Danny H, Sona N. Moroccan food security and the wheat value chain: research brief. Duke University; 2016.
  3. 3. Kerbel S, Azzi H, Kadi H, Fellag H, Debras J, Kellouche A. Insecticidal activity of crude olive pomace oils from Kabylia (Algeria) against the infestation of Rhyzopertha dominica (F.) and Sitophilus oryzae (L.) in stored wheat grains. Afr Entomol. 2024;32. https://doi.org/10.17159/2254-8854/2023/a13585
  4. 4. Kumar D, Kalita P. Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods. 2017;6(1):8. https://doi.org/10.3390/foods6010008
  5. 5. Taban A, Saharkhiz MJ, Hooshmandi M. Insecticidal and repellent activity of three Satureja species against adult red flour beetles, Tribolium castaneum. Acta Ecologica Sinica. 2017;37(3):201-6. https://doi.org/10.1016/j.chnaes.2017.01.001
  6. 6. El Baghazaoui R, Belmalha S, Boutagayout A, Nassiri L, Bouiamrine EH. Ecological management of stored cereal and legume insects in Morocco: status and future prospects. Int J Agric Biol. 2023;30(6):422-38. https://doi.org/10.17957/IJAB/15.2104
  7. 7. Lougraimzi H, Iraqui SE, Bouaichi A, Gouit S, Achbani EH, Fadli M. Insecticidal effect of essential oil and powder of Mentha pulegium L. leaves against Sitophilus oryzae and Tribolium castaneum, the main pests of stored wheat in Morocco. Pol J Entomol. 2018;87(3):263-78. https://doi.org/10.2478/pjen-2018-0018
  8. 8. El Baghazaoui R, Belmalha S, Boutagayout A, Nassiri L, Alami SE, Savoie J-M, et al. Insecticidal properties and chemical characterization of Laurus nobilis L. essential oils from two regions of Morocco against Callosobruchus maculatus. Agriculture. 2024;14(7):1150. https://doi.org/10.3390/agriculture14071150
  9. 9. Khare ASA. Use of vegetable oils as biopesticide in grain protection: a review. J Fert Pestic. 2012;3(1).
  10. 10. Tembo E, Murfitt RFA. Effect of combining vegetable oil with pirimiphos-methyl for protection of stored wheat against Sitophilus granarius. J Stored Prod Res. 1995;31(1):77-81. https://doi.org/10.1016/0022-474X(94)00027-Q
  11. 11. Obeng-Ofori D, Reichmuth Ch. Plant oils as potentiation agents of monoterpenes for protection of stored grains against damage by stored product beetle pests. Int J Pest Manag. 1999;45(2):155-9. https://doi.org/10.1080/096708799227950
  12. 12. Small E. Evolution and classification of Cannabis sativa in relation to human utilization. Bot Rev. 2015;81(3):189-294. https://doi.org/10.1007/s12229-015-9157-3
  13. 13. Muzammil S, Wang Y, Siddique MH, Zubair E, Hayat S, Zubair M, et al. Polyphenolic composition, antioxidant, antiproliferative and antidiabetic activities of Coronopus didymus leaf extracts. Molecules. 2022;27(19):6263. https://doi.org/10.3390/molecules27196263
  14. 14. Stambouli H, Bouri AE, Bouayoun T. Évolution de la teneur en Δ9-THC dans les saisies de résines de cannabis au Maroc de 2005 à 2014. Ann Toxic Anal. 2016;28(2):146-52. https://doi.org/10.1016/j.toxac.2015.11.001
  15. 15. Merzouki A, Mesa JM. La chanvre (Cannabis sativa L.) dans la pharmacopée traditionnelle du Rif (Nord du Maroc). Ars Pharmaceutica. 1999;40:233-40.
  16. 16. Benelli G, Pavela R, Lupidi G, Nabissi M, Petrelli R, Kamte SLN, et al. The crop-residue of fiber hemp cv. Futura 75: from a waste product to a source of botanical insecticides. Environ Sci Pollut Res. 2017;25(11):10515-25. https://doi.org/10.1007/s11356-017-0635-5
  17. 17. Ona G, Balant M, Bouso JC, Gras A, Vallès J, Vitales D, et al. The use of Cannabis sativa L. for pest control: from ethnobotanical knowledge to a systematic review of experimental studies. Cannabis Cannabinoid Res. 2021;7(4):365-87. https://doi.org/10.1089/can.2021.0095
  18. 18. Bonini SA, Premoli M, Tambaro S, Kumar A, Maccarinelli G, Memo M, et al. Cannabis sativa: a comprehensive ethnopharmacological review of a medicinal plant with a long history. J Ethnopharmacol. 2018;227:300-15. https://doi.org/10.1016/j.jep.2018.09.004
  19. 19. Elzinga S, Fischedick J, Podkolinski R, Raber JC. Cannabinoids and terpenes as chemotaxonomic markers in cannabis. Nat Prod Chem Res. 2018;3:181.
  20. 20. Sghaier L, Vial J, Sassiat P, Thiebaut D, Watiez M, Breton S, et al. An overview of recent developments in volatile compounds analysis from edible oils: technique-oriented perspectives. Eur J Lipid Sci Technol. 2016;118(12):1853-79. https://doi.org/10.1002/ejlt.201500508
  21. 21. Nikpay A. Insecticidal efficacy of three vegetable oils as post-harvest grain protectants of stored wheat against Rhyzopertha dominica. Insect Sci. 2007;14(2):145-50. https://doi.org/10.1111/j.1744-7917.2007.00136.x
  22. 22. Hidayat Y, Heather N, Hassan E. Repellency and oviposition deterrence effects of plant essential and vegetable oils against female Queensland fruit fly Bactrocera tryoni. Aust J Entomol. 2013;52(4):379-86. https://doi.org/10.1111/aen.12040
  23. 23. Bouarfa M, Chebaibi M, Amrati FE-Z, Souirti Z, Saghrouchni H, Atki YE, et al. In vivo and in silico studies of the effects of oil extracted from Cannabis sativa L. seeds on healing of burned skin wounds in rats. Front Chem. 2024;12. https://doi.org/10.3389/fchem.2024.1381527
  24. 24. Abdelrahman MH, Hussain RO, Shaheed DS, AbuKhader M, Khan SA. Gas chromatography–mass spectrometry analysis and in vitro biological studies on fixed oil isolated from the waste pits of two varieties of Olea europaea L. OCL. 2019;26:28. https://doi.org/10.1051/ocl/2019022
  25. 25. Abbott WS. A method of computing the effectiveness of an insecticide. J Econ Entomol. 1925;18(2):265-7. https://doi.org/10.1093/jee/18.2.265a
  26. 26. Finney DJ. Probit analysis. 3rd ed. London: Cambridge University Press; 1971:333.
  27. 27. Shah JA, Vendl T, Aulicky R, Božik M, Stejskal V. Odourless vegetable oils as insect pest repellents for short-term protection of various food packaging materials. J Plant Dis Protect. 2024;131(5):1549-59. https://doi.org/10.1007/s41348-024-00965-3
  28. 28. McDonald LL, Guy RH, Speirs RD. Preliminary evaluation of new candidate materials as toxicants, repellents and attractants against stored product insects. Washington: Agriculture Research Service, US Department of Agriculture; 1970:183.
  29. 29. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem. 2009;31(2):455-61. https://doi.org/10.1002/jcc.21334
  30. 30. Vlachos N, Skopelitis Y, Psaroudaki M, Konstantinidou V, Chatzilazarou A, Tegou E. Applications of Fourier transform-infrared spectroscopy to edible oils. Anal Chim Acta. 2006;573-574:459-65. https://doi.org/10.1016/j.aca.2006.05.034
  31. 31. Jović O, Smrečki N, Popović Z. Interval ridge regression as a fast and robust method for quantitative prediction and variable selection applied to edible oil adulteration. Talanta. 2015;150:37-45. https://doi.org/10.1016/j.talanta.2015.12.007
  32. 32. Jović O, Jović A. FTIR-ATR adulteration study of hempseed oil of different geographic origins. J Chemometrics. 2017;31(12). https://doi.org/10.1002/cem.2938
  33. 33. Poggetto GD, Di Maro M, Gargiulo L, Duraccio D, Santagata G, D’Ayala GG. Sustainable microwave-assisted extraction of hemp seed oil as functional additive into polybutylene succinate films for food packaging. Polymers. 2025;17(10):1376. https://doi.org/10.3390/polym17101376
  34. 34. Leizer C, Ribnicky D, Poulev A, Dushenkov S, Raskin I. The composition of hemp seed oil and its potential as an important source of nutrition. J Nutraceuticals Funct Med Foods. 2000;2(4):35-53. https://doi.org/10.1300/J133v02n04_04
  35. 35. Ivbijaro MF, Ligan C, Youdeowei A. Control of rice weevils, Sitophilus oryzae, in stored maize with vegetable oils. Agric Ecosyst Environ. 1985;14(3-4):237-42. https://doi.org/10.1016/0167-8809(85)90038-6
  36. 36. Obeng-Ofori D. Plant oils as grain protectants against infestations of Cryptolestes pusillus and Rhyzopertha dominica in stored grain. Entomol Exp Appl. 1995;77(2):133-9. https://doi.org/10.1111/j.1570-7458.1995.tb01993.x
  37. 37. Nana P, Nchu F, Bikomo R, Kutima H. Efficacy of vegetable oils against dry bean beetles Acanthoscelides obtectus. Afr Crop Sci J. 2014;22(3):175-80.
  38. 38. Kellouche A, Soltani N. Activité biologique des poudres de cinq plantes et de l’huile essentielle d’une d’entre elles sur Callosobruchus maculatus. Int J Trop Insect Sci. 2004;24(2). https://doi.org/10.1079/IJT200420
  39. 39. Aider FA, Kellouche A, Fellag H, Debras JF. Evaluation of the bio-insecticidal effects of the main fatty acids of olive oil on Callosobruchus maculatus in cowpea (Vigna unguiculata). J Plant Dis Protect. 2016;123(5):235-45. https://doi.org/10.1007/s41348-016-0034-z
  40. 40. Kavallieratos NG, Boukouvala MC, Ntalli N, Skourti A, Karagianni ES, Nika EP, et al. Effectiveness of eight essential oils against two key stored-product beetles, Prostephanus truncatus and Trogoderma granarium. Food Chem Toxicol. 2020;139:111255. https://doi.org/10.1016/j.fct.2020.111255
  41. 41. Dutta P, Dey T, Kalita M, Kalita J. Insecticidal activity of the leaf extracts of Cannabis indica against two major stored grain pests Callosobruchus chinensis and Sitophilus oryzae. Int J Trop Agric. 2015;33:3057-61.
  42. 42. Zia A, Aslam M, Naz F, Muhammad I. Bio-efficacy of some plant extracts against chickpea beetle, Callosobruchus chinensis. Pakistan J Zool. 2011;43:733-7.
  43. 43. Mantzoukas S, Ntoukas A, Lagogiannis I, Kalyvas N, Eliopoulos P, Poulas K. Larvicidal action of cannabidiol oil and neem oil against three stored product insect pests. Biology. 2020;9(10):321. https://doi.org/10.3390/biology9100321
  44. 44. Hill J, Van Schoonhoven A. Effectiveness of vegetable oil fractions in controlling the Mexican bean weevil on stored beans. J Econ Entomol. 1981;74:478-9. https://doi.org/10.1093/jee/74.4.478
  45. 45. Don-Pedro KN. Mechanisms of action of some vegetable oils against Sitophilus zeamais on wheat. J Stored Prod Res. 1989;25(4):217-23. https://doi.org/10.1016/0022-474X(89)90027-1
  46. 46. Weaver DK, Subramanyam B. Produits botaniques. In: Subramanyam BH, Hagstrum DW, editors. Alternatives aux pesticides dans la lutte intégrée contre les parasites des produits stockés. Dordrecht: Kluwer Academic Publishers; 2000:303-20.
  47. 47. Perumal AB, Huang L, Nambiar RB, He Y, Li X, Sellamuthu PS. Application of essential oils in packaging films for the preservation of fruits and vegetables: a review. Food Chem. 2021;375:131810. https://doi.org/10.1016/j.foodchem.2021.131810
  48. 48. Oliveira NNFC, Galvão AS, Amaral EA, Santos AWO, Sena-Filho JG, Oliveira EE, et al. Toxicity of vegetable oils to the coconut mite Aceria guerreronis and selectivity against the predator Neoseiulus baraki. Exp Appl Acarol. 2017;72(1):23-34. https://doi.org/10.1007/s10493-017-0134-x
  49. 49. Sittichok S, Phaysa W, Soonwera M. Repellency activity of essential oil on Thai local plants against American cockroach Periplaneta americana. Int J Agric Technol. 2013;9(6):1613-20.
  50. 50. Kachroo A, Kachroo P. Fatty acid-derived signals in plant defense. Annu Rev Phytopathol. 2009;47(1):153-76. https://doi.org/10.1146/annurev-phyto-080508-081820
  51. 51. Hieu TT, Kim S, Kwon HW, Ahn Y. Enhanced repellency of binary mixtures of Zanthoxylum piperitum or Zanthoxylum armatum oil constituents and Calophyllum inophyllum nut oil to Stomoxys calcitrans. Pest Manag Sci. 2010;66(11):1191-8. https://doi.org/10.1002/ps.1993
  52. 52. Soonwera M, Moungthipmalai T, Takawirapat W, Sittichok S. Ovicidal and repellent activities of several plant essential oils against Periplaneta americana and enhanced activities from their combined formulation. Sci Rep. 2022;12(1). https://doi.org/10.1038/s41598-022-16386-x
  53. 53. Vendl T, Stejskal V, Kadlec J, Aulicky R. New approach for evaluating the repellent activity of essential oils against storage pests using a miniaturized model of stored-commodity packaging and a wooden transport pallet. Ind Crops Prod. 2021;172:114024. https://doi.org/10.1016/j.indcrop.2021.114024
  54. 54. Isman MB. Botanical insecticides, deterrents and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol. 2005;51(1):45-66. https://doi.org/10.1146/annurev.ento.51.110104.151146
  55. 55. Ferreira LG, Santos RND, Oliva G, Andricopulo AD. Molecular docking and structure-based drug design strategies. Molecules. 2015;20(7):13384-421. https://doi.org/10.3390/molecules200713384
  56. 56. Tao X, Huang Y, Wang C, Chen F, Yang L, Ling L, et al. Recent developments in molecular docking technology applied in food science: a review. Int J Food Sci Technol. 2019;55(1):33-45. https://doi.org/10.1111/ijfs.14325
  57. 57. Omoniwa BP, Johnson TO, Acho MA, Nwonuma CO, Soji-Omoniwa O, Oluwafemi AG, et al. Larvicidal and adulticidal activities of essential oil of Helianthus annuus seed and molecular docking of its GC-MS constituents against Aedes aegypti acetylcholinesterase. Inform Med Unlocked. 2024;45:101446. https://doi.org/10.1016/j.imu.2024.101446

Downloads

Download data is not yet available.