Skip to main navigation menu Skip to main content Skip to site footer

Research communications

Early Access

In vitro screening reveals high-level resistance to a virulent Erwinia amylovora isolate in native Malus sieversii

DOI
https://doi.org/10.14719/pst.11952
Submitted
1 October 2025
Published
16-12-2025

Abstract

Fire blight, caused by the bacterium Erwinia amylovora, is a destructive disease that threatens global apple production and the native forests of Malus sieversii in Kazakhstan, the primary progenitor of domesticated apples. To identify sources of genetic resistance, we screened ten native M. sieversii genotypes using an in vitro shoot inoculation assay with a virulent local isolate of E. amylovora. Disease severity was measured as the percentage of lesion length (PLL). Genotype 6.1 exhibited complete resistance (0 % PLL), whereas three other genotypes (1.2, 5.3 and 6.2) were highly resistant. In contrast, genotypes 1.1 and 5.1 were highly susceptible to infection. Molecular screening for sequence-characterised amplified region (SCAR) markers linked to the major fire blight resistance locus, FBF7, revealed that the highly resistant genotype 5.3 was positive for the AE10-375 marker. However, the completely resistant genotype 6.1 and the other highly resistant individuals lacked both FBF7-linked markers. These results demonstrate the presence of the known FBF7 locus and suggest the existence of potentially novel genetic resistance sources in this wild population.

References

  1. 1. Norelli JL, Jones AL, Aldwinckle HS. Fire blight management in the twenty-first century: using new technologies that enhance host resistance in apple. Plant Dis. 2003;87:756-65. https://doi.org/10.1094/PDIS.2003.87.7.756
  2. 2. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol. 2012;13:614-29. https://doi.org/10.1111/j.1364-3703.2012.00804.x
  3. 3. European and Mediterranean Plant Protection Organization (EPPO). EPPO Global Database. Paris: European and Mediterranean Plant Protection Organization; 2025 Nov 3.
  4. 4. van der Zwet T, Orolaza-Halbrendt N, Zeller W. Fire blight: history, biology and management. St. Paul (MN): American Phytopathological Society Press; 2012.
  5. 5. Johnson KB, Stockwell VO. Management of fire blight: a case study in microbial ecology. Annu Rev Phytopathol. 1998;36:227-48. https://doi.org/10.1146/annurev.phyto.36.1.227
  6. 6. Jones AL, Schnabel E. The development of streptomycin-resistant strains of Erwinia amylovora. In: Fire blight: the disease and its causative agent Erwinia amylovora. Wallingford (UK): CABI International; 2000. p. 335-67. https://doi.org/10.1079/9780851992945.0235
  7. 7. Drenova N, Isin MM, Dzhaimurzina AA, Zharmukhamedova GA, Aitkulov AK. Bacterial fire blight in the Republic of Kazakhstan. Plant Health Res Pract. 2013;1:39-48.
  8. 8. Cornille A, Giraud T, Smulders MJ, Roldán-Ruiz I, Gladieux P. The domestication and evolutionary ecology of apples. Trends Genet. 2014;30(2):57-65. https://doi.org/10.1016/j.tig.2013.10.002
  9. 9. Richards CM, Volk GM, Reilley AA, Henk AD, Lockwood DR, Reeves PA, et al. Genetic diversity and population structure in Malus sieversii, a wild progenitor species of domesticated apple. Tree Genet Genomes. 2009;5:339-47. https://doi.org/10.1007/s11295-008-0190-9
  10. 10. Omasheva MY, Flachowsky H, Ryabushkina NA, Pozharskiy AS, Galiakparov NN, Hanke MV. To what extent do wild apples in Kazakhstan retain their genetic integrity? Tree Genet Genomes. 2017;13(3):52. https://doi.org/10.1007/s11295-017-1134-z
  11. 11. Harshman JM, Evans KM, Allen H, Potts R, Flamenco J, Aldwinckle HS, et al. Fire blight resistance in wild accessions of Malus sieversii. Plant Dis. 2017;101(10):1738-45. https://doi.org/10.1094/PDIS-01-17-0077-RE
  12. 12. Desnoues E, Norelli JL, Aldwinckle HS, Wisniewski ME, Evans KM, Malnoy M, et al. Identification of novel strain-specific and environment-dependent minor QTLs linked to fire blight resistance in apples. Plant Mol Biol Rep. 2018;36(2):247-56. https://doi.org/10.1007/s11105-018-1076-0
  13. 13. Sedlak J, Paprstein F, Korba J, Sillerova J. Development of a system for testing apple resistance to Erwinia amylovora using in vitro culture techniques. Plant Prot Sci. 2015;51:1-5. https://doi.org/10.17221/94/2013-PPS
  14. 14. Paprstein F, Sedlak J, Korba J, Sillerova J. Testing of resistance to Erwinia amylovora in an in vitro culture assay. Acta Hortic. 2011;896:381-4. https://doi.org/10.17660/ActaHortic.2011.896.54
  15. 15. Geider K. Molecular detection of fire blight and differentiation of Erwinia amylovora strains. Phytopathol Pol. 2005;35:57-68.
  16. 16. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):e63. https://doi.org/10.1093/nar/28.12.e63
  17. 17. Llop P, Caruso P, Cubero J, Morente C, Lopez MM. A simple extraction procedure for efficient routine detection of pathogenic bacteria in plant material by PCR. J Microbiol Methods. 1999;37(1):23-31. https://doi.org/10.1016/S0167-7012(99)00033-0
  18. 18. Beer SV, Rundle JR. Suppression of Erwinia amylovora by Erwinia herbicola in immature pear fruits. Phytopathology. 1983;73:1346. https://doi.org/10.1094/Phyto-73-1328
  19. 19. Vogt I, Wohner T, Richter K, Flachowsky H, Sundin GW, Wensing A, et al. Gene-for-gene relationship in the host-pathogen system Malus × robusta 5-Erwinia amylovora. New Phytol. 2013;197:1262-75. https://doi.org/10.1111/nph.12094
  20. 20. Aubakirova K, Omasheva M, Ryabushkina N, Tazhibaev T, Kampitova G, Galiakparov N. Evaluation of five protocols for DNA extraction from leaves of Malus sieversii, Vitis vinifera and Armeniaca vulgaris. Genet Mol Res. 2014;13(1):1278-87. https://doi.org/10.4238/2014.February.27.13
  21. 21. Khan MA, Durel CE, Duffy B, Drouet D, Kellerhals M, Gessler C, et al. Development of molecular markers linked to the ‘Fiesta’ linkage group 7 major QTL for fire blight resistance and their application for marker-assisted selection. Genome. 2007;50(6):568-77. https://doi.org/10.1139/g07-033
  22. 22. Sehic J, Nybom H, Garkava-Gustavsson L, Patocchi A, Kellerhals M, Duffy B. Fire blight (Erwinia amylovora) resistance in apple varieties associated with molecular markers. Int J Hortic Sci. 2009;15(1-2):53-7. https://doi.org/10.31421/IJHS/15/1-2/812
  23. 23. Khan MA, Duffy B, Gessler C, Patocchi A. QTL mapping of fire blight resistance in apple. Mol Breed. 2006;17:299-306. https://doi.org/10.1007/s11032-006-9000-y
  24. 24. Peil A, Flachowsky H, Hanke MV, Richter K, Rode J. Inoculation of Malus × robusta 5 progeny with a strain breaking resistance to fire blight reveals a minor QTL on LG5. Acta Hortic. 2011;896:357-62. https://doi.org/10.17660/ActaHortic.2011.896.49
  25. 25. Khan A, Chao T. Wild apple species as a source of fire blight resistance for sustainable productivity of apple orchards. Fruit Q. 2017;25(4):13-8.

Downloads

Download data is not yet available.