Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Mapping global trends in Lamiaceae research

DOI
https://doi.org/10.14719/pst.11962
Submitted
24 September 2025
Published
09-02-2026

Abstract

This study presents a comprehensive bibliometric analysis of global scientific literature on the family Lamiaceae , commonly known as the mint family. The primary objective is to systematically map the research landscape, identify key trends, highlight influential entities and uncover emerging themes within this diverse botanical group. Data were meticulously retrieved from major scientific databases, including Scopus and Web of Science, covering publications from 1954 to 2025. Advanced bibliometric tools such as VOSviewer, Bibliometrix R and CiteSpace were employed to conduct performance analysis and science mapping, including co-authorship, co-citation and co-word analyses. A total of 2145 documents were analyzed, showing a 6.75 % annual growth rate and strong collaboration between China, India and Iran. The analysis reveals a dynamic research field characterised by distinct periods of significant growth, with notable surges in publication activity observed from 2006 to 2012, particularly in studies focusing on Orthosiphon stamineus, a prominent species within the family Lamiaceae. Core research areas predominantly focus on the pharmacological properties of Lamiaceae species, including their antidiabetic, antioxidant, anti-inflammatory, neuroprotective and pesticidal activities. Additionally, substantial attention is given to phytochemical characterisation and ethnobotanical applications. The study identifies leading journals, prolific authors and dominant contributing countries, while collaboration networks and thematic clusters underscore the field's interdisciplinary nature and evolving research focus. The findings highlight the immense medicinal and economic potential of Lamiaceae, emphasising the need for sustainable practices and continued exploration of its rich array of bioactive compounds. This analysis provides a strategic roadmap for future research, identifying current knowledge gaps and highlighting promising avenues for novel discoveries.

References

  1. 1. Raja RR. Medicinally potential plants of Lamiaceae family: an. Res J Med Plant. 2012;6:203-13. https://doi.org/10.3923/rjmp.2012.203.213
  2. 2. Ramos da Silva LR, Ferreira OO, Cruz JN, de Jesus Pereira Franco C, Oliveira dos Anjos T, Cascaes MM, et al. Lamiaceae essential oils, phytochemical profile, antioxidant and biological activities. Evid Based Complement Alternat Med. 2021;2021:6748052. https://doi.org/10.1155/2021/6748052
  3. 3. Uritu CM, Mihai CT, Stanciu GD, Dodi G, Alexa-Stratulat T, Luca A, et al. Medicinal plants of the family Lamiaceae in pain therapy: a review. Pain Res Manag. 2018;2018:7801543. https://doi.org/10.1155/2018/7801543
  4. 4. Keator G, Steunenberg M. Lamiaceae (mint family). In: Keator G, Steunenberg M, editors. California plant families: west of the Sierran Crest and deserts. Berkeley: University of California Press; 2009. p.98-100. https://doi.org/10.1525/9780520943247-041
  5. 5. Yavuz C, Kılıç DD, Ayar A, Yıldırım T. Antibacterial effects of methanol extracts of some plant species belonging to Lamiaceae family. Int J Second Metab. 2017;4:429-33. https://doi.org/10.21448/ijsm.376691
  6. 6. Jordamovic N, Niksic H, Muratovic S, Gusic I, Koric E, Alagic L, et al. Phytochemical investigation and antioxidative capacity of triterpenes present in plant species belonging to Lamiaceae family. Bull Chem Technol Bosnia Herzegovina. 2020;54.
  7. 7. Moral-Muñoz JA, Herrera-Viedma E, Santisteban-Espejo A, Cobo MJ. Software tools for conducting bibliometric analysis in science: an up-to-date review. Prof Inf. 2020;29:1-13. https://doi.org/10.3145/epi.2020.ene.03
  8. 8. Passas I. Bibliometric analysis: the main steps. Encyclopedia. 2024;4:604-14. https://doi.org/10.3390/encyclopedia4020065
  9. 9. Aria M, Cuccurullo C. Bibliometrix: an R-tool for comprehensive science mapping analysis. J Informetr. 2017;11:959-75. https://doi.org/10.1016/j.joi.2017.08.007
  10. 10. Kumar R. Bibliometric analysis: comprehensive insights into tools, techniques, applications and solutions for research excellence. Spectr Eng Manag Sci. 2025;3:45-62. https://doi.org/10.31181/sems31202535k
  11. 11. Akwu NA, Banji-Onisile F, Adeoye JK, Rambau U, Mendez M, Nnadozie I, et al. Orthosiphon stamineus Benth. (Lamiaceae): a bibliometric analysis of its antidiabetic properties. Acta Sci Biol Sci. 2025;47:e72905. https://doi.org/10.4025/actascibiolsci.v47i1.72905
  12. 12. Lim WM, Kumar S. Guidelines for interpreting the results of bibliometric analysis: a sensemaking approach. Glob Bus Organ Excell. 2024;43:17-26. https://doi.org/10.1002/joe.22229
  13. 13. Boyack KW, Klavans R. Co-citation analysis, bibliographic coupling and direct citation: which citation approach represents the research front most accurately? J Am Soc Inf Sci Technol. 2010;61:2389-404. https://doi.org/10.1002/asi.21419
  14. 14. Bales ME, Wright DN, Oxley PR, Wheeler TR. Bibliometric visualization and analysis software: state of the art, workflows and best practices.
  15. 15. Mulay P, Joshi R, Chaudhari A. Distributed incremental clustering algorithms: a bibliometric and word-cloud review analysis. Sci Technol Libr. 2020;39:289-306. https://doi.org/10.1080/0194262X.2020.1775163
  16. 16. Dorman HD, Deans SG. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol. 2000;88:308-16. https://doi.org/10.1046/j.1365-2672.2000.00969.x
  17. 17. Petersen M, Simmonds MS. Rosmarinic acid. Phytochemistry. 2003;62:121-5. https://doi.org/10.1016/S0031-9422(02)00513-7
  18. 18. Krishnaiah D, Sarbatly R, Nithyanandam R. A review of the antioxidant potential of medicinal plant species. Food Bioprod Process. 2011;89:217-33. https://doi.org/10.1016/j.fbp.2010.04.008
  19. 19. Marchese A, Orhan IE, Daglia M, Barbieri R, Di Lorenzo A, Nabavi SF, et al. Antibacterial and antifungal activities of thymol: a brief review of the literature. Food Chem. 2016;210:402-14. https://doi.org/10.1016/j.foodchem.2016.04.111
  20. 20. Pratap R, Ram VJ. Natural and synthetic chromenes, fused chromenes and versatility of dihydrobenzo[h]chromenes in organic synthesis. Chem Rev. 2014;114:10476-526. https://doi.org/10.1021/cr500075s
  21. 21. İşcan G, Kırımer N, Kürkcüoğlu M, Başer HC, Demirci F. Antimicrobial screening of Mentha piperita essential oils. J Agric Food Chem. 2002;50:3943-6. https://doi.org/10.1021/jf011476k
  22. 22. Marchese A, Barbieri R, Coppo E, Orhan IE, Daglia M, Nabavi SF, et al. Antimicrobial activity of eugenol and essential oils containing eugenol: a mechanistic viewpoint. Crit Rev Microbiol. 2017;43:668-89. https://doi.org/10.1080/1040841X.2017.1295225
  23. 23. Delamare AP, Moschen-Pistorello IT, Artico L, Atti-Serafini L, Echeverrigaray S. Antibacterial activity of the essential oils of Salvia officinalis L. and Salvia triloba L. Food Chem. 2007;100:603-8. https://doi.org/10.1016/j.foodchem.2005.09.078
  24. 24. Gang DR, Wang J, Dudareva N, Nam KH, Simon JE, Lewinsohn E, et al. An investigation of the storage and biosynthesis of phenylpropenes in sweet basil. Plant Physiol. 2001;125:539-55. https://doi.org/10.1104/pp.125.2.539
  25. 25. Kachur K, Suntres Z. The antibacterial properties of phenolic isomers, carvacrol and thymol. Crit Rev Food Sci Nutr. 2020;60:3042-53. https://doi.org/10.1080/10408398.2019.1675585
  26. 26. Salehi B, Mishra AP, Shukla I, Sharifi-Rad M, Contreras MD, Segura-Carretero A, et al. Thymol, thyme and other plant sources: health and potential uses. Phytother Res. 2018;32:1688-706. https://doi.org/10.1002/ptr.6109
  27. 27. Zhao T, Tang H, Xie L, Zheng Y, Ma Z, Sun Q, et al. Scutellaria baicalensis Georgi. (Lamiaceae): a review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. J Pharm Pharmacol. 2019;71:1353-69. https://doi.org/10.1111/jphp.13129
  28. 28. Lukhoba CW, Simmonds MS, Paton AJ. Plectranthus: a review of ethnobotanical uses. J Ethnopharmacol. 2006;103:1-24. https://doi.org/10.1016/j.jep.2005.09.011
  29. 29. Shang X, He X, He X, Li M, Zhang R, Fan P, et al. The genus Scutellaria: an ethnopharmacological and phytochemical review. J Ethnopharmacol. 2010;128:279-313. https://doi.org/10.1016/j.jep.2010.01.006
  30. 30. Ivanova D, Gerova D, Chervenkov T, Yankova T. Polyphenols and antioxidant capacity of Bulgarian medicinal plants. J Ethnopharmacol. 2005;96:145-50. https://doi.org/10.1016/j.jep.2004.08.033
  31. 31. Vitalini S, Iriti M, Puricelli C, Ciuchi D, Segale A, Fico G. Traditional knowledge on medicinal and food plants used in Val San Giacomo (Sondrio, Italy)—an alpine ethnobotanical study. J Ethnopharmacol. 2013;145:517-29. https://doi.org/10.1016/j.jep.2012.11.024
  32. 32. Wang ZL, Wang S, Kuang Y, Hu ZM, Qiao X, Ye M. A comprehensive review on phytochemistry, pharmacology and flavonoid biosynthesis of Scutellaria baicalensis. Pharm Biol. 2018;56:465-84. https://doi.org/10.1080/13880209.2018.1492620
  33. 33. Sharififar F, Dehghn-Nudeh G, Mirtajaldini M. Major flavonoids with antioxidant activity from Teucrium polium L. Food Chem. 2009;112:885-8. https://doi.org/10.1016/j.foodchem.2008.06.064
  34. 34. Qian J, Song J, Gao H, Zhu Y, Xu J, Pang X, et al. The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza. PLoS One. 2013;8:e57607. https://doi.org/10.1371/journal.pone.0057607
  35. 35. Tan BK, Vanitha J. Immunomodulatory and antimicrobial effects of some traditional Chinese medicinal herbs: a review. Curr Med Chem. 2004;11:1423-30. https://doi.org/10.2174/0929867043365161
  36. 36. Birtić S, Dussort P, Pierre FX, Bily AC, Roller M. Carnosic acid. Phytochemistry. 2015;115:9-19. https://doi.org/10.1016/j.phytochem.2014.12.026
  37. 37. Grayer RJ, Kite GC, Goldstone FJ, Bryan SE, Paton A, Putievsky E. Infraspecific taxonomy and essential oil chemotypes in sweet basil, Ocimum basilicum. Phytochemistry. 1996;43:1033-9. https://doi.org/10.1016/S0031-9422(96)00429-3
  38. 38. Fachini-Queiroz FC, Kummer R, Estevao-Silva CF, Carvalho MD, Cunha JM, Grespan R, et al. Effects of thymol and carvacrol, constituents of Thymus vulgaris L. essential oil, on the inflammatory response. Evid Based Complement Alternat Med. 2012;2012:657026. https://doi.org/10.1155/2012/657026
  39. 39. Tundis R, Loizzo MR, Menichini F, Statti GA, Menichini F. Biological and pharmacological activities of iridoids: recent developments. Mini Rev Med Chem. 2008;8:399-420. https://doi.org/10.2174/138955708783955926
  40. 40. Conforti F, Sosa S, Marrelli M, Menichini F, Statti GA, Uzunov D, et al. In vivo anti-inflammatory and in vitro antioxidant activities of Mediterranean dietary plants. J Ethnopharmacol. 2008;116:144-51. https://doi.org/10.1016/j.jep.2007.11.015
  41. 41. Cakilcioglu U, Turkoglu I. An ethnobotanical survey of medicinal plants in Sivrice (Elazığ–Turkey). J Ethnopharmacol. 2010;132:165-75. https://doi.org/10.1016/j.jep.2010.08.017
  42. 42. Neves JM, Matos C, Moutinho C, Queiroz G, Gomes LR. Ethnopharmacological notes about ancient uses of medicinal plants in Trás-os-Montes (northern Portugal). J Ethnopharmacol. 2009;124:270-83. https://doi.org/10.1016/j.jep.2009.04.041
  43. 43. Luo C, Zou L, Sun H, Peng J, Gao C, Bao L, et al. A review of the anti-inflammatory effects of rosmarinic acid on inflammatory diseases. Front Pharmacol. 2020;11:153. https://doi.org/10.3389/fphar.2020.00153
  44. 44. Kamatou GP, Makunga NP, Ramogola WP, Viljoen AM. South African Salvia species: a review of biological activities and phytochemistry. J Ethnopharmacol. 2008;119:664-72. https://doi.org/10.1016/j.jep.2008.06.030
  45. 45. Çakılcıoğlu U, Khatun S, Türkoğlu İ, Hayta S. Ethnopharmacological survey of medicinal plants in Maden (Elazığ–Turkey). J Ethnopharmacol. 2011;137:469-86. https://doi.org/10.1016/j.jep.2011.05.046
  46. 46. Jamila F, Mostafa E. Ethnobotanical survey of medicinal plants used by people in Oriental Morocco to manage various ailments. J Ethnopharmacol. 2014;154:76-87. https://doi.org/10.1016/j.jep.2014.03.016
  47. 47. Mosaddegh M, Naghibi F, Moazzeni H, Pirani A, Esmaeili S. Ethnobotanical survey of herbal remedies traditionally used in Kohghiluyeh va Boyer Ahmad province of Iran. J Ethnopharmacol. 2012;141:80-95. https://doi.org/10.1016/j.jep.2012.02.004
  48. 48. Borges RS, Ortiz BL, Pereira AC, Keita H, Carvalho JC. Rosmarinus officinalis essential oil: a review of its phytochemistry, anti-inflammatory activity and mechanisms of action involved. J Ethnopharmacol. 2019;229:29-45. https://doi.org/10.1016/j.jep.2018.09.038
  49. 49. Sajed H, Sahebkar A, Iranshahi M. Zataria multiflora Boiss. (Shirazi thyme)—an ancient condiment with modern pharmaceutical uses. J Ethnopharmacol. 2013;145:686-98. https://doi.org/10.1016/j.jep.2012.12.018
  50. 50. Polat R, Satıl F. An ethnobotanical survey of medicinal plants in Edremit Gulf (Balıkesir–Turkey). J Ethnopharmacol. 2012;139:626-41. https://doi.org/10.1016/j.jep.2011.12.004
  51. 51. Ribeiro-Santos R, Carvalho-Costa D, Cavaleiro C, Costa HS, Albuquerque TG, Castilho MC, et al. A novel insight on an ancient aromatic plant: the rosemary (Rosmarinus officinalis L.). Trends Food Sci Technol. 2015;45:355-68. https://doi.org/10.1016/j.tifs.2015.07.015
  52. 52. Ahmed HM. Ethnomedicinal, phytochemical and pharmacological investigations of Perilla frutescens (L.) Britt. Molecules. 2018;24:102. https://doi.org/10.3390/molecules24010102
  53. 53. Nadeem M, Imran M, Gondal TA, Imran A, Shahbaz M, Amir RM, et al. Therapeutic potential of rosmarinic acid: a comprehensive review. Appl Sci. 2019;9:3139. https://doi.org/10.3390/app9153139
  54. 54. Ugulu I, Baslar S, Yorek N, Dogan Y. The investigation and quantitative ethnobotanical evaluation of medicinal plants used around Izmir province, Turkey. J Med Plants Res. 2009;3:345-67.
  55. 55. Gião MS, González-Sanjosé ML, Rivero-Pérez MD, Pereira CI, Pintado ME, Malcata FX. Infusions of Portuguese medicinal plants: dependence of final antioxidant capacity and phenol content on extraction features. J Sci Food Agric. 2007;87:2638-47. https://doi.org/10.1002/jsfa.3023
  56. 56. Kala CP. Ethnomedicinal botany of the Apatani in the Eastern Himalayan region of India. J Ethnobiol Ethnomed. 2005;1:11. https://doi.org/10.1186/1746-4269-1-11
  57. 57. Tetik F, Civelek S, Cakilcioglu U. Traditional uses of some medicinal plants in Malatya (Turkey). J Ethnopharmacol. 2013;146:331-46. https://doi.org/10.1016/j.jep.2012.12.054
  58. 58. Baher ZF, Mirza M, Ghorbanli M, Rezaii MB. The influence of water stress on plant height, herbal and essential oil yield and composition in Satureja hortensis L. Flavour Fragr J. 2002;17:275-7. https://doi.org/10.1002/ffj.1097
  59. 59. Gürdal B, Kültür Ş. An ethnobotanical study of medicinal plants in Marmaris (Muğla, Turkey). J Ethnopharmacol. 2013;146:113-26. https://doi.org/10.1016/j.jep.2012.12.012
  60. 60. Borrás-Linares I, Stojanović Z, Quirantes-Piné R, Arráez-Román D, Švarc-Gajić J, Fernández-Gutiérrez A, et al. Rosmarinus officinalis leaves as a natural source of bioactive compounds. Int J Mol Sci. 2014;15:20585-606. https://doi.org/10.3390/ijms151120585
  61. 61. Menković N, Šavikin K, Tasić S, Zdunić G, Stešević D, Milosavljević S, et al. Ethnobotanical study on traditional uses of wild medicinal plants in Prokletije Mountains (Montenegro). J Ethnopharmacol. 2011;133:97-107. https://doi.org/10.1016/j.jep.2010.09.008
  62. 62. Šavikin K, Zdunić G, Menković N, Živković J, Ćujić N, Tereščenko M, et al. Ethnobotanical study on traditional use of medicinal plants in South-Western Serbia, Zlatibor district. J Ethnopharmacol. 2013;146:803-10. https://doi.org/10.1016/j.jep.2013.02.006
  63. 63. Hajhashemi V, Sadraei H, Ghannadi AR, Mohseni M. Antispasmodic and anti-diarrhoeal effect of Satureja hortensis L. essential oil. J Ethnopharmacol. 2000;71:187-92. https://doi.org/10.1016/S0378-8741(99)00209-3
  64. 64. Vladimir-Knežević S, Blažeković B, Kindl M, Vladić J, Lower-Nedza AD, Brantner AH. Acetylcholinesterase inhibitory, antioxidant and phytochemical properties of selected medicinal plants of the Lamiaceae family. Molecules. 2014;19:767-82. https://doi.org/10.3390/molecules19010767
  65. 65. Bhattacharya S, Gupta N, Dutta A, Khanra PK, Dutta R, Žiarovská J, et al. Repurposing major metabolites of Lamiaceae family as potential inhibitors of α-synuclein aggregation to alleviate neurodegenerative diseases: an in silico approach. Front Pharmacol. 2025;16:1519145. https://doi.org/10.3389/fphar.2025.1519145
  66. 66. Khazaneha M, Zandrahimi F, Sadatmoosavi A, Salarpour S, Karegar-Borzi H, Tajedini O, et al. An overview of scientific publication of the chamomile (Matricaria chamomilla) research: a bibliometric analysis. J Scientometr Res. 2024;13:604-14. https://doi.org/10.5530/jscires.13.2.47
  67. 67. Ebadollahi A, Ziaee M, Palla F. Essential oils extracted from different species of the Lamiaceae plant family as prospective bioagents against several detrimental pests. Molecules. 2020;25:1556. https://doi.org/10.3390/molecules25071556
  68. 68. Nuryana Z, Xu W, Lu S, Tasir Z, Suyadi S. Mapping global research on shadow education: trends and future agenda. Int J Eval Res Educ. 2023;12:1105-13. https://doi.org/10.11591/ijere.v12i2.24667
  69. 69. Chakrabartty I, Mohanta YK, Nongbet A, Mohanta TK, Mahanta S, Das N, et al. Exploration of Lamiaceae in cardiovascular diseases and functional foods: medicine as food and food as medicine. Front Pharmacol. 2022;13:894814. https://doi.org/10.3389/fphar.2022.894814

Downloads

Download data is not yet available.