Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Nano-biopesticide: A novel and sustainable approach towards pest and disease management

DOI
https://doi.org/10.14719/pst.12014
Submitted
27 September 2025
Published
08-12-2025

Abstract

This article reviews nano-biopesticides as environmentally friendly alternatives to conventional chemical pesticides in modern agriculture. Synthesis, characterization and functional properties of various nanomaterials, including biopolymer-based nanoparticles (NPs) like zein and chitosan, as well as metallic NPs, silver, gold, titanium dioxide and zinc oxide. These nanostructures are more effective against a variety of pests and diseases because of their improved bioactivity, stability and targeted delivery. Safer agricultural practices are promoted by the use of nano-biopesticides, which have several benefits such as lower pesticide dose, less environmental pollution and less damage to non-target species. The review also looks at how certain nanomaterials work, such as by interfering with pest physiology or rupturing microbial membranes, which adds to their effectiveness. Additionally, it assesses the possible harm that NP exposure may cause to ecosystems and human health, highlighting the significance of safety evaluations and regulatory frameworks. The article highlights recent developments in nanotechnology, such as green synthesis approaches, to provide environmentally sustainable pest management options. Despite their promise, challenges such as cost, scalability and long-term environmental impacts require further investigation. In order to enhance nano-biopesticide formulations, guarantee safety compliance and make it easier to incorporate them into sustainable pest control programs, the prospects section emphasizes the value of multidisciplinary collaboration. Overall, nanotechnology holds potential to revolutionize pest control by offering highly effective, safe and sustainable alternatives that support integrated pest management and agricultural sustainability.   

References

  1. 1. Thomson KJ. The State of Food and Agriculture 2008: Biofuels: Prospects, Risks and Opportunities. Rome: FAO; 2008. 128 p. J Agric Sci. 2009;147(4):503. https://doi.org/10.1017/S0021859609008624
  2. 2. Berini F, Katz C, Gruzdev N, Casartelli M, Tettamanti G, Marinelli F. Microbial and viral chitinases: attractive biopesticides for integrated pest management. Biotechnol Adv. 2018;36(3):818-38. https://doi.org/10.1016/j.biotechadv.2018.01.002
  3. 3. Sinha K, Ghosh J, Sil PC. New pesticides: a cutting-edge view of contributions from nanotechnology for the development of sustainable agricultural pest control. In: Elsevier eBooks; 2017. p.47-79. https://doi.org/10.1016/B978-0-12-804299-1.00003-5
  4. 4. Benelli G, Beier JC. Current vector control challenges in the fight against malaria. Acta Trop. 2017;174:91-6. https://doi.org/10.1016/j.actatropica.2017.06.028
  5. 5. Benelli G, Duggan MF. Management of arthropod vector data - social and ecological dynamics facing the One Health perspective. Acta Trop. 2018;182:80-91. https://doi.org/10.1016/j.actatropica.2018.02.015
  6. 6. Cuenca JB, Tirado N, Vikström M, Lindh CH, Stenius U, Leander K, et al. Pesticide exposure among Bolivian farmers: associations between worker protection and exposure biomarkers. J Expo Sci Environ Epidemiol. 2019;30(4):730-42. https://doi.org/10.1038/s41370-019-0128-3
  7. 7. Abubakar Y, Tijjani H, Egbuna C, Adetunji CO, Kala S, Kryeziu TL, et al. Pesticides, history and classification. In: Elsevier eBooks; 2020. p.29-42. https://doi.org/10.1016/B978-0-12-819304-4.00003-8
  8. 8. Abdollahdokht D, Asadikaram G, Abolhassani M, Pourghadamyari H, Abbasi-Jorjandi M, Faramarz S, et al. Pesticide exposure and related health problems among farmworkers' children: a case-control study in southeast Iran. Environ Sci Pollut Res. 2021;28(40):57216-31. https://doi.org/10.1007/s11356-021-14319-1
  9. 9. Abdollahdokht D, Gao Y, Faramarz S, Poustforoosh A, Abbasi M, Asadikaram G, et al. Conventional agrochemicals towards nano-biopesticides: an overview on recent advances. Chem Biol Technol Agric. 2022;9(1). https://doi.org/10.1186/s40538-021-00281-0
  10. 10. Benelli G, Romano D. Mosquito vectors of Zika virus. Entomol Gen. 2017;36(4):309-18. https://doi.org/10.1127/entomologia/2017/0496
  11. 11. Khater H, Hendawy N, Govindarajan M, Murugan K, Benelli G. Photosensitizers in the fight against ticks: safranin as a novel photodynamic fluorescent acaricide to control the camel tick Hyalomma dromedarii (Ixodidae). Parasitol Res. 2016;115(10):3747-58. https://doi.org/10.1007/s00436-016-5136-9
  12. 12. Stevenson PC, Isman MB, Belmain SR. Pesticidal plants in Africa: a global vision of new biological control products from local uses. Ind Crops Prod. 2017;110:2-9. https://doi.org/10.1016/j.indcrop.2017.08.034
  13. 13. Mostafalou S, Abdollahi M. Pesticides and human chronic diseases: evidence, mechanisms and perspectives. Toxicol Appl Pharmacol. 2013;268(2):157-77. https://doi.org/10.1016/j.taap.2013.01.025
  14. 14. Cantrell CL, Dayan FE, Duke SO. Natural products as sources for new pesticides. J Nat Prod. 2012;75(6):1231-42. https://doi.org/10.1021/np300024u
  15. 15. Pal GK, Kumar B, Shahi S. Antifungal activity of some common weed extracts against phytopathogenic fungi Alternaria spp. Int J Univers Pharm Life Sci. 2013;3(2):6-14.
  16. 16. Mishra J, Arora NK. Bioformulations for plant growth promotion and combating phytopathogens: a sustainable approach. In: Springer eBooks; 2016. p.3-33. https://doi.org/10.1007/978-81-322-2779-3_1
  17. 17. Seiber JN, Coats J, Duke SO, Gross AD. Biopesticides: state of the art and future opportunities. J Agric Food Chem. 2014;62(48):11613-9. https://doi.org/10.1021/jf504252n
  18. 18. Huang KS, Yang CH, Huang SL, Chen CY, Lu YY, Lin YS. Recent advances in antimicrobial polymers: a mini-review. Int J Mol Sci. 2016;17(9):1578. https://doi.org/10.3390/ijms17091578
  19. 19. Pentak D, Kozik V, Bąk A, Dybał P, Sochanik A, Jampilek J. Methotrexate and cytarabine-loaded nanocarriers for multidrug cancer therapy: spectroscopic study. Molecules. 2016;21(12):1689. https://doi.org/10.3390/molecules21121689
  20. 20. Vaculikova E, Cernikova A, Placha D, Pisarcik M, Dedkova K, Peikertova P, et al. Cimetidine nanoparticles for permeability enhancement. J Nanosci Nanotechnol. 2016;16(8):7840-3. https://doi.org/10.1166/jnn.2016.12562
  21. 21. Mathew IL, Singh D, Singh R, Tripathi C. Bacillus thuringiensis: the biocontrol agent in a food web perspective. Biolife. 2014;2(1):348-62.
  22. 22. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS. Nanoparticulate material delivery to plants. Plant Sci. 2010;179(3):154-63. https://doi.org/10.1016/j.plantsci.2010.04.012
  23. 23. Damalas C, Koutroubas S. Current status and recent developments in biopesticide use. Agriculture. 2018;8(1):13. https://doi.org/10.3390/agriculture8010013
  24. 24. Koul O. Nanobiopesticides: an introduction. Nano-Biopesticides Today Future Perspect. Elsevier; 2019. p.1-15. https://doi.org/10.1016/B978-0-12-815829-6.00001-2
  25. 25. Sayed AMM, Kim S, Behle RW. Characterisation of silver nanoparticles synthesised by Bacillus thuringiensis as a nanobiopesticide for insect pest control. Biocontrol Sci Technol. 2017;27(11):1308-26. https:doi.org/10.1080/09583157.2017.1397597
  26. 26. Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010;28(11):580-8. https://doi.org/10.1016/j.tibtech.2010.07.006
  27. 27. Hazafa A, Murad M, Masood MU, Bilal S, Khan MN, Farooq Q, et al. Nano-biopesticides as an emerging technology for pest management. In: IntechOpen eBooks; 2022. https://doi.org/10.5772/intechopen.101285
  28. 28. Jampílek J, Kráľová K. Nanobiopesticides in agriculture: state of the art and future opportunities. In: Elsevier eBooks; 2019. p.397-447. https://doi.org/10.1016/B978-0-12-815829-6.00018-8
  29. 29. Crampton L. Biological vs. chemical pest control: benefits and disadvantages. 2017.
  30. 30. Kumar VV. Biofertilizers and biopesticides in sustainable agriculture. In: Springer eBooks; 2018. p.377-98. https://doi.org/10.1007/978-981-10-8402-7_14
  31. 31. Juarez LAM, Gutierrez CG. Modelo tecnológico industrial para la producción de bioinsecticidas. Rev Multidiscip Av Investig. 2019;5(2):1-11.
  32. 32. Chakoosari MMD. Efficacy of various biological and microbial insecticides. J Biol Today's World. 2013;2(5):249-54.
  33. 33. Cordova-Kreylos AL, Fernandez LE, Koivunen M, Yang A, Flor-Weiler L, Marrone PG. Isolation and characterization of Burkholderia rinojensis sp. nov., a non-Burkholderia cepacia complex soil bacterium with insecticidal and miticidal activities. Appl Environ Microbiol. 2013;79(24):7669-78. https://doi.org/10.1128/AEM.02365-13
  34. 34. Castrillo LA, Griggs MH, Vandenberg JD. Vegetative compatibility groups in indigenous and mass-released strains of the entomopathogenic fungus Beauveria bassiana: likelihood of recombination in the field. J Invertebr Pathol. 2004;86(1-2):26-37. https://doi.org/10.1016/j.jip.2004.03.009
  35. 35. Kiliç İA. Entomopathogens in control of urban pests. Ankara Univ Vet Fak Derg. 2014;61(2):155-60. https://doi.org/10.1501/Vetfak_0000002622
  36. 36. Podgwaite JD. Gypchek: biological insecticide for the gypsy moth. J For. 1999;97(3):16-9. https://doi.org/10.1093/jof/97.3.16
  37. 37. Podgwaite JD, Rush P, Hall D, Walton GS. Efficacy of the Neodiprion sertifer (Hymenoptera: Diprionidae) nucleopolyhedrosis virus (Baculovirus) product, Neochek-S. J Econ Entomol. 1984;77(2):525-8. https://doi.org/10.1093/jee/77.2.525
  38. 38. Schuster C, Konstantinidou-Doltsinis S, Schmitt A. Glycyrrhiza glabra extract protects plants against important phytopathogenic fungi. Commun Agric Appl Biol Sci. 2010;75(4):531-40.
  39. 39. Muthomi JW, Lengai GMW, Wagacha MJ, Narla RD. In vitro activity of plant extracts against some important plant pathogenic fungi of tomato. Aust J Crop Sci. 2017;11(6):683-9. https://doi.org/10.21475/ajcs.17.11.06.p399
  40. 40. Salim HA, Salman IS, Majeed II, Hussein HH. Evaluation of some plant extracts for their nematicidal properties against root-knot nematode, Meloidogyne sp. J Genet Environ Resour Conserv. 2016;3:241-4.
  41. 41. Zotti M, Santos EAD, Cagliari D, Christiaens O, Taning CNT, Smagghe G. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. Pest Manag Sci. 2017;74(6):1239-50. https://doi.org/10.1002/ps.4813
  42. 42. Tewari S, Leskey TC, Nielsen AL, Piñero JC, Rodriguez-Saona CR. Use of pheromones in insect pest management, with special attention to weevil pheromones. In: Elsevier eBooks. 2013. p.141-68. https://doi.org/10.1016/B978-0-12-398529-3.00010-5
  43. 43. Mao X, Yan A, Wan Y, Luo D, Yang H. Dispersive solid-phase extraction using microporous sorbent UiO-66 coupled to gas chromatography-tandem mass spectrometry for determination of organophosphorus pesticide residues in edible vegetable oils. J Agric Food Chem. 2019;67(6):1760-70. https://doi.org/10.1021/acs.jafc.8b04980
  44. 44. Mahakham W, Sarmah AK, Maensiri S, Theerakulpisut P. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci Rep. 2017;7(1). https://doi.org/10.1038/s41598-017-08669-5
  45. 45. Banerjee J, Kole C. Plant nanotechnology: an overview on concepts, strategies and tools. In: Springer eBooks. 2016. p.1-14. https://doi.org/10.1007/978-3-319-42154-4_1
  46. 46. Cheng HN, Klasson KT, Asakura T, Wu Q. Nanotechnology in agriculture. In: Cheng HN, Doemeny L, Geraci CL, Schmidt DG, editors. Nanotechnology: Delivering on the Promise. Washington, DC: ACS; 2016. p.233-42. https://doi.org/10.1021/bk-2016-1224.ch012
  47. 47. Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci. 2008;145(1-2):83-96. https://doi.org/10.1016/j.cis.2008.09.002
  48. 48. Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13(10):2638-50. https://doi.org/10.1039/c1gc15386b
  49. 49. Cui B, Lv Y, Gao F, Wang C, Zeng Z, Wang Y, et al. Improving abamectin bioavailability via nanosuspension constructed by wet milling technique. Pest Manag Sci. 2019;75(10):2756-64. https://doi.org/10.1002/ps.5386
  50. 50. CR C, MB P. Nanotechnology and agroecosystem. Madras Agric J. 2009;96:1-9. https://doi.org/10.29321/MAJ.10.100436
  51. 51. Hameed A, Al-Samarrai M. Nanoparticles as alternative to pesticides in management plant diseases: a review. Int J Sci Res Publ. 2012;2:61-4.
  52. 52. Pérez-de-Luque A, Rubiales D. Nanotechnology for parasitic plant control. Pest Manag Sci. 2009;65(5):540-5. https://doi.org/10.1002/ps.1732
  53. 53. Ealia SAM, Saravanakumar MP. A review on the classification, characterization, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng. 2017;320:1-19.
  54. 54. Pan K, Zhong Q. Organic nanoparticles in foods: fabrication, characterization and utilization. Annu Rev Food Sci Technol. 2016;7:245-66. https://doi.org/10.1146/annurev-food-041715-033215
  55. 55. Ng KK, Zheng G. Molecular interactions in organic nanoparticles for phototheranostic applications. Chem Rev. 2015;115(19):11012-42. https://doi.org/10.1021/acs.chemrev.5b00140
  56. 56. Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization and applications: a comprehensive review for biologists. J Nanobiotechnology. 2022;20(1). https://doi.org/10.1186/s12951-022-01477-8
  57. 57. Chandra S, Das P, Bag S, Laha D, Pramanik P. Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles. Nanoscale. 2011;3(4):1533-40. https://doi.org/10.1039/c0nr00735h
  58. 58. Liu M, Zhao F, Zhu D, Duan H, Lv Y, Li L, et al. Ultramicroporous carbon nanoparticles derived from metal-organic framework nanoparticles for high-performance supercapacitors. Mater Chem Phys. 2018;211:234-41. https://doi.org/10.1016/j.matchemphys.2018.02.030
  59. 59. Oh W-k, Yoon H, Jang J. Size control of magnetic carbon nanoparticles for drug delivery. Biomaterials. 2009;31(6):1342-8. https://doi.org/10.1016/j.biomaterials.2009.10.018
  60. 60. Mauter MS, Elimelech M. Environmental applications of carbon-based nanomaterials. Environ Sci Technol. 2008;42(16):5843-59. https://doi.org/10.1021/es8006904
  61. 61. Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2017;12(7):908-31. https://doi.org/10.1016/j.arabjc.2017.05.011
  62. 62. Toshima N, Yonezawa T. Bimetallic nanoparticles: novel materials for chemical and physical applications. New J Chem. 1998;22(11):1179-201. https://doi.org/10.1039/a805753b
  63. 63. Nascimento MA, Cruz JC, Rodrigues GD, De Oliveira AF, Lopes RP. Synthesis of polymetallic nanoparticles from spent lithium-ion batteries and application in the removal of reactive blue 4 dye. J Clean Prod. 2018;202:264-72. https://doi.org/10.1016/j.jclepro.2018.08.118
  64. 64. Mody V, Siwale R, Singh A, Mody H. Introduction to metallic nanoparticles. J Pharm Bioallied Sci. 2010;2(4):282. https://doi.org/10.4103/0975-7406.72127
  65. 65. Fedlheim DL, Foss CA. Metal nanoparticles. CRC Press. 2001. https://doi.org/10.1201/9780367800475
  66. 66. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev. 2011;41(7):2740-79. https://doi.org/10.1039/C1CS15237H
  67. 67. Sun S, Murray CB, Weller D, Folks L, Moser A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science. 2000;287(5460):1989-92. https://doi.org/10.1126/science.287.5460.1989
  68. 68. Gupta SM, Tripathi M. An overview of commonly used semiconductor nanoparticles in photocatalysis. High Energy Chem. 2011;46(1):1-9. https://doi.org/10.1134/S0018143912010134
  69. 69. Thomas S, Harshita BSP, Mishra P, Talegaonkar S. Ceramic nanoparticles: fabrication methods and applications in drug delivery. Curr Pharm Des. 2015;21(42):6165-88. https://doi.org/10.2174/1381612821666151027153246
  70. 70. Moreno-Vega AI, Gómez-Quintero T, Nuñez-Anita RE, Acosta-Torres LS, Castaño V. Polymeric and ceramic nanoparticles in biomedical applications. J Nanotechnol. 2012;2012:1-10. https://doi.org/10.1155/2012/936041
  71. 71. Ragaei M, Sabry AH. Nanotechnology for insect pest control. Int J Sci Environ Technol. 2014;3:528-45.
  72. 72. Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I. Nanosuspensions: emerging novel agrochemical formulations. In: Insecticides Design Using Advanced Technologies. Berlin: Springer; 2007. p. 1-39. https://doi.org/10.1007/978-3-540-46907-0_1
  73. 73. Manjunatha S, Biradar D, Aladakatti YR. Nanotechnology and its applications in agriculture: a review. J Farm Sci. 2016;29(1):1-13.
  74. 74. Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, De Heer C, et al. Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol. 2008;53(1):52-62. https://doi.org/10.1016/j.yrtph.2008.10.008
  75. 75. Lu W, Senapati D, Wang S, Tovmachenko O, Singh AK, Yu H, et al. Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chem Phys Lett. 2010;487(1-3):92-6. https://doi.org/10.1016/j.cplett.2010.01.027
  76. 76. Rajaganesh R, Murugan K, Panneerselvam C, Jayashanthini S, Aziz AT, Roni M, et al. Fern-synthesized silver nanocrystals: towards a new class of mosquito oviposition deterrents? Res Vet Sci. 2016;109:40-51. https://doi.org/10.1016/j.rvsc.2016.09.012
  77. 77. Mandal BK. Silver nanoparticles: potential as insecticidal and microbial biopesticides. In: Elsevier eBooks. 2019. p. 281-302. https://doi.org/10.1016/B978-0-12-815829-6.00012-7
  78. 78. Parthiban E, Manivannan N, Ramanibai R, Mathivanan N. Green synthesis of silver nanoparticles from Annona reticulata leaves aqueous extract and its mosquito larvicidal and antimicrobial activity on human pathogens. Biotechnol Rep. 2018;21:e00297. https://doi.org/10.1016/j.btre.2018.e00297
  79. 79. Sujitha V, Murugan K, Paulpandi M, Panneerselvam C, Suresh U, Roni M, et al. Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res. 2015;114(9):3315-25. https://doi.org/10.1007/s00436-015-4556-2
  80. 80. Murugan K, Nataraj D, Madhiyazhagan P, Sujitha V, Chandramohan B, Panneerselvam C, et al. Carbon and silver nanoparticles in the fight against the filariasis vector Culex quinquefasciatus: genotoxicity and impact on behavioral traits of non-target aquatic organisms. Parasitol Res. 2015;115(3):1071-83. https://doi.org/10.1007/s00436-015-4837-9
  81. 81. Rouhani M, Samih MA, Kalantari S. Insecticide effect of silver and zinc nanoparticles against Aphis nerii Boyer De Fonscolombe (Hemiptera: Aphididae). Chilean J Agric Res. 2012;72(4):590. https://doi.org/10.4067/S0718-58392012000400020
  82. 82. Rouhani M, Samih MA, Aslani A, Beiki K. Side effect of nano-ZnO-TiO2-Ag mix-oxide nanoparticles on Frankliniella occidentalis Pergande (Thys.: Thripidae). In: Proceedings Symposium: Third International Symposium on Insect Physiology, Biochemistry and Molecular Biology; 2011. p. 2-5
  83. 83. Guan H, Chi D, Yu J, Li X. A novel photodegradable insecticide: preparation, characterization and properties evaluation of nano-Imidacloprid. Pestic Biochem Physiol. 2008;92(2):83-91. https://doi.org/10.1016/j.pestbp.2008.06.008
  84. 84. Roni M, Murugan K, Panneerselvam C, Subramaniam J, Nicoletti M, Madhiyazhagan P, et al. Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol Environ Saf. 2015;121:31-8. https://doi.org/10.1016/j.ecoenv.2015.07.005
  85. 85. Devi GD, Murugan K, Selvam CP. Green synthesis of silver nanoparticles using Euphorbia hirta (Euphorbiaceae) leaf extract against crop pest of cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). J Biopestic. 2014;7:54. https://doi.org/10.57182/jbiopestic.7.0.54-66
  86. 86. Yasur J, Rani PU. Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere. 2014;124:92-102. https://doi.org/10.1016/j.chemosphere.2014.11.029
  87. 87. Mao BH, Chen ZY, Wang YJ, Yan SJ. Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep. 2018;8(1). https://doi.org/10.1038/s41598-018-20728-z
  88. 88. Nair PMG, Choi J. Modulation in the mRNA expression of ecdysone receptor gene in aquatic midge, Chironomus riparius upon exposure to nonylphenol and silver nanoparticles. Environ Toxicol Pharmacol. 2011;33(1):98-106. https://doi.org/10.1016/j.etap.2011.09.006
  89. 89. Fouad H, Hongjie L, Hosni D, Wei J, Abbas G, Ga'al H, et al. Controlling Aedes albopictus and Culex pipiens pallens using silver nanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode of action. Artif Cells Nanomed Biotechnol. 2017;46(3):558-67. https://doi.org/10.1080/21691401.2017.1329739
  90. 90. Nawaz S, Tahir HM, Mahmood MA, Summer M, Ali S, Ali A, et al. Current status of pyrethroids resistance in Aedes aegypti (Culicidae: Diptera) in Lahore district, Pakistan: a novel mechanistic insight. J Med Entomol. 2021;58(6):2432-8. https://doi.org/10.1093/jme/tjab137
  91. 91. Summer M, Tahir HM, Ali S, Nawaz S, Abaidullah R, Mumtaz S, et al. Nanobiopesticides as an alternative and sustainable solution to tackle pest outbreaks. J Kans Entomol Soc. 2024;96(4). https://doi.org/10.2317/0022-8567-96.4.112
  92. 92. Ga'al H, Fouad H, Tian J, Hu Y, Abbas G, Mo J. Synthesis, characterization and efficacy of silver nanoparticles against Aedes albopictus larvae and pupae. Pestic Biochem Physiol. 2017;144:49-56. https://doi.org/10.1016/j.pestbp.2017.11.004
  93. 93. Summer M, Tahir HM, Ali S. Sonication and heat-mediated synthesis, characterization and larvicidal activity of sericin-based silver nanoparticles against dengue vector Aedes aegypti. Microsc Res Tech. 2023;86(10):1363-77. https://doi.org/10.1002/jemt.24333
  94. 94. Banumathi B, Vaseeharan B, Ishwarya R, Govindarajan M, Alharbi NS, Kadaikunnan S, et al. Toxicity of herbal extracts used in ethno-veterinary medicine and green-encapsulated ZnO nanoparticles against Aedes aegypti and microbial pathogens. Parasitol Res. 2017;116(6):1637-51. https://doi.org/10.1007/s00436-017-5438-6
  95. 95. Barik TK, Sahu B, Swain V. Nanosilica-from medicine to pest control. Parasitol Res. 2008;103(2):253-8. https://doi.org/10.1007/s00436-008-0975-7
  96. 96. Kavallieratos NG, Athanassiou CG, Peteinatos GG, Boukouvala MC, Benelli G. Insecticidal effect and impact of fitness of three diatomaceous earths on different maize hybrids for the eco-friendly control of the invasive stored-product pest Prostephanus truncatus (Horn). Environ Sci Pollut Res. 2017;25(11):10407-17. https://doi.org/10.1007/s11356-017-9565-5
  97. 97. Shoaib A, Elabasy A, Waqas M, Lin L, Cheng X, Zhang Q, et al. Entomotoxic effect of silicon dioxide nanoparticles on Plutella xylostella (L.) (Lepidoptera: Plutellidae) under laboratory conditions. Toxicol Environ Chem Rev. 2018;100(1):80-91. https://doi.org/10.1080/02772248.2017.1387786
  98. 98. Stadler T, Lopez Garcia GP, Gitto JG, Buteler M. Nanostructured alumina: biocidal properties and mechanism of action of a novel insecticide powder. Bull Insectology. 2017;70(1):17-25.
  99. 99. Mommaerts V, Jodko K, Thomassen LCJ, Martens JA, Kirsch-Volders M, Smagghe G. Assessment of side-effects by Ludox TMA silica nanoparticles following a dietary exposure on the bumblebee Bombus terrestris. Nanotoxicology. 2011;6(5):554-61. https://doi.org/10.3109/17435390.2011.590905
  100. 100. Li F, Gu Z, Wang B, Xie Y, Ma L, Xu K, et al. Effects of the biosynthesis and signaling pathway of ecdysterone on silkworm (Bombyx mori) following exposure to titanium dioxide nanoparticles. J Chem Ecol. 2014;40(8):913-22. https://doi.org/10.1007/s10886-014-0487-0
  101. 101. Philbrook NA, Winn LM, Afrooz ARMN, Saleh NB, Walker VK. The effect of TiO2 and Ag nanoparticles on reproduction and development of Drosophila melanogaster and CD-1 mice. Toxicol Appl Pharmacol. 2011;257(3):429-36. https://doi.org/10.1016/j.taap.2011.09.027
  102. 102. Small T, Ochoa-Zapater MA, Gallello G, Ribera A, Romero FM, Torreblanca A, et al. Gold-nanoparticles ingestion disrupts reproduction and development in the German cockroach. Sci Total Environ. 2016;565:882-8. https://doi.org/10.1016/j.scitotenv.2016.02.032
  103. 103. Patil CD, Borase HP, Suryawanshi RK, Patil SV. Trypsin inactivation by latex fabricated gold nanoparticles: A new strategy towards insect control. Enzyme Microb Technol. 2016;92:18-25. https://doi.org/10.1016/j.enzmictec.2016.06.005
  104. 104. P, Vaseeharan B, Vijayakumar S, Balan B, Govindarajan M, Alharbi NS, et al. Biopolymer zein-coated gold nanoparticles: synthesis, antibacterial potential, toxicity and histopathological effects against the Zika virus vector Aedes aegypti. J Photochem Photobiol B. 2017;173:404-11. https://doi.org/10.1016/j.jphotobiol.2017.06.004
  105. 105. Sundararajan B, Kumari BDR. Novel synthesis of gold nanoparticles using Artemisia vulgaris L. leaf extract and their efficacy of larvicidal activity against dengue fever vector Aedes aegypti L. J Trace Elem Med Biol. 2017;43:187-96. https://doi.org/10.1016/j.jtemb.2017.03.008
  106. 106. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci. 2014;9(6):385
  107. 107. Gurunathan S, Jeyaraj M, Kang MH, Kim JH. Graphene oxide-platinum nanoparticle nanocomposites: a suitable biocompatible therapeutic agent for prostate cancer. Polymers. 2019;11(4):733. https://doi.org/10.3390/polym11040733
  108. 108. Guzman MG, Dille J, Godet S. Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int J Chem Biomol Eng. 2009;2(3):104-11.
  109. 109. Khan A, Rashid A, Younas R, Chong R. A chemical reduction approach to the synthesis of copper nanoparticles. Int Nano Lett. 2015;6(1):21-6. https://doi.org/10.1007/s40089-015-0163-6
  110. 110. Begletsova N, Selifonova E, Chumakov A, Al-Alwani A, Zakharevich A, Chernova R, et al. Chemical synthesis of copper nanoparticles in aqueous solutions in the presence of anionic surfactant sodium dodecyl sulfate. Colloids Surf A Physicochem Eng Asp. 2018;552:75-80. https://doi.org/10.1016/j.colsurfa.2018.05.023
  111. 111. Duan H, Wang D, Li Y. Green chemistry for nanoparticle synthesis. Chem Soc Rev. 2015;44(16):5778-92. https://doi.org/10.1039/C4CS00363B
  112. 112. Gunsolus IL, Mousavi MPS, Hussein K, Bühlmann P, Haynes CL. Effects of humic and fulvic acids on silver nanoparticle stability, dissolution and toxicity. Environ Sci Technol. 2015;49(13):8078-86. https://doi.org/10.1021/acs.est.5b01496
  113. 113. Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 2019;9(5):2673-702. https://doi.org/10.1039/C8RA08982E
  114. 114. Behravan M, Panahi AH, Naghizadeh A, Ziaee M, Mahdavi R, Mirzapour A. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int J Biol Macromol. 2018;124:148-54. https://doi.org/10.1016/j.ijbiomac.2018.11.101
  115. 115. Pirtarighat S, Ghannadnia M, Baghshahi S. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J Nanostruct Chem. 2018;9(1):1-9. https://doi.org/10.1007/s40097-018-0291-4
  116. 116. Ahmad S, Munir S, Zeb N, Ullah A, Khan B, Ali J, et al. Green nanotechnology: a review on green synthesis of silver nanoparticles - an ecofriendly approach. Int J Nanomedicine. 2019;14:5087-107. https://doi.org/10.2147/IJN.S200254
  117. 117. Vaidyanathan R, Gopalram S, Kalishwaralal K, Deepak V, Pandian SRK, Gurunathan S. Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity. Colloids Surf B Biointerfaces. 2009;75(1):335-41. https://doi.org/10.1016/j.colsurfb.2009.09.006
  118. 118. Samuel MS, Jose S, Selvarajan E, Mathimani T, Pugazhendhi A. Biosynthesized silver nanoparticles using Bacillus amyloliquefaciens; application for cytotoxicity effect on A549 cell line and photocatalytic degradation of p-nitrophenol. J Photochem Photobiol B. 2019;202:111642. https://doi.org/10.1016/j.jphotobiol.2019.111642
  119. 119. Feroze N, Arshad B, Younas M, Afridi MI, Saqib S, Ayaz A. Fungal mediated synthesis of silver nanoparticles and evaluation of antibacterial activity. Microsc Res Tech. 2019;83(1):72-80. https://doi.org/10.1002/jemt.23390
  120. 120. Jha AK, Prasad K, Prasad K, Kulkarni AR. Plant system: nature's nanofactory. Colloids Surf B Biointerfaces. 2009;73(2):219-23. https://doi.org/10.1016/j.colsurfb.2009.05.018
  121. 121. Thammasittirong A, Prigyai K, Thammasittirong SNR. Mosquitocidal potential of silver nanoparticles synthesized using local isolates of Bacillus thuringiensis subsp. israelensis and their synergistic effect with a commercial strain of B. thuringiensis subsp. israelensis. Acta Trop. 2017;176:91-7. https://doi.org/10.1016/j.actatropica.2017.07.020
  122. 122. Malaikozhundan B, Vaseeharan B, Vijayakumar S, Thangaraj MP. Bacillus thuringiensis-coated zinc oxide nanoparticle and its biopesticidal effects on the pulse beetle Callosobruchus maculatus. J Photochem Photobiol B. 2017;174:306-14. https://doi.org/10.1016/j.jphotobiol.2017.08.014
  123. 123. Zhao X, Meng Z, Wang Y, Chen W, Sun C, Cui B, et al. Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nat Plants. 2017;3(12):956-64. https://doi.org/10.1038/s41477-017-0063-z
  124. 124. Zheng Y, You S, Ji C, Yin M, Yang W, Shen J. Development of an amino acid-functionalized fluorescent nanocarrier to deliver a toxin to kill insect pests. Adv Mater. 2015;28(7):1375-80. https://doi.org/10.1002/adma.201504993
  125. 125. Cao J, Guenther RH, Sit TL, Lommel SA, Opperman CH, Willoughby JA. Development of abamectin loaded plant virus nanoparticles for efficacious plant parasitic nematode control. ACS Appl Mater Interfaces. 2015;7(18):9546-53. https://doi.org/10.1021/acsami.5b00940
  126. 126. Li Z, Su L, Wang H, An S, Yin X. Physicochemical and biological properties of nanochitin-abamectin conjugate for Noctuidae insect pest control. J Nanopart Res. 2020;22(9). https://doi.org/10.1007/s11051-020-05015-1

Downloads

Download data is not yet available.