Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 8 No. 4 (2021)

Efficient regeneration protocol for callus and shoot induction from recalcitrant Phaseolus vulgaris L. explants under optimum growth conditions

DOI
https://doi.org/10.14719/pst.2021.8.4.1205
Submitted
12 April 2021
Published
19-08-2021 — Updated on 01-10-2021

Abstract

Callus is the most significant morphogenic response obtained in plant tissue culture studies. It can be used for micropropagation or to create transgenic lines. Phaseolus vulgaris L. (common bean) is one of the economically important crops with a great nutritional value. However, very little effort has been made to regenerate callus from P. vulgaris explants. Six explants were used namely root tip, leaves, plumule, radicle, cotyledon and embryo to develop a callus from P. vulgaris. The minimum days for callus induction was 10 days in plumule, radicle and embryo explants, while the maximum was 15 days in cotyledon explants with the callus induction percentage of 75%. The largest callus was found to be 2.77 gm in weight and 2.5 cm in diameter in MS medium. Medium with different concentrations of plant growth regulators (PGRs) showed different growth pattern in callus induction. Culture medium with 1.50 mg/l of BAP, 0.50 mg/l of 2, 4-D and 0.10 mg/l of NAA showed the best result in callus induction. Higher concentration of BAP (2.00 mg/l), along with 0.25 mg/l of 2, 4-D was ideal for shoot regeneration and maturation. Shoot induction medium along with 2.00 mg/l of NAA concentrations were found to be best for rooting. It was found that plumule and radicle favor callus induction, however, they are also potent for shoot and root induction. Knowledge gained in this study will be useful in developing a standard protocol for plant regeneration from P. vulgaris explants and will also be useful in creating transgenic line of P. vulgaris.

References

  1. Thorpe TA. History of plant tissue culture. Molecular Biotechnol. 2007 Oct 1;37(2):169-80. https://doi.org/10.1007/s12033-007-0031-3
  2. Thorpe T. History of plant tissue culture. In Plant Cell Culture Protocols 2012 (pp. 9-27). Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-818-4_2
  3. Pipan B, Megli? V. Diversification and genetic structure of the western-to-eastern progression of European Phaseolus vulgaris L. germplasm. BMC Plant Biol. 2019;19:1-6. https://doi.org/10.1186/s12870-019-2051-0.
  4. Li SB, Xie ZZ, Hu CG, Zhang JZ. A review of auxin response factors (ARFs) in plants. Front Plant Sci. 2016;7:47. https://doi.org/10.3389/fpls.2016.00047
  5. Fan M, Xu C, Xu K, Hu Y. Lateral organ boundaries domain transcription factors direct callus formation in Arabidopsis regeneration. Cell Res. 2012;22:1169-80. https://doi.org/10.1038/cr.2012.63
  6. Ikeuchi M, Sugimoto K, Iwase A. Plant callus: mechanisms of induction and repression. The Plant Cell. 2013;25:3159-73. https://doi.org/10.1105/tpc.113.116053.
  7. Mastuti R, Munawarti A, Firdiana ER. The combination effect of auxin and cytokinin on in vitro callus formation of Physalis angulata L. A medicinal plant. InAIP Conference Proceedings 2017 Nov 29 (Vol. 1908, No. 1, p. 040007). AIP Publishing LLC. https://doi.org/10.1063/1.5012721
  8. Neibaur I, Gallo M, Altpeter F. The effect of auxin type and cytokinin concentration on callus induction and plant regeneration frequency from immature inflorescence segments of seashore paspalum (Paspalum vaginatum Swartz). In Vitro Cell Dev Biol. 2008;44:480-86. https://doi.org/10.1007/s11627-008-9143-0
  9. Su YH, Liu YB, Zhang XS. Auxin-cytokinin interaction regulates meristem development. Mol Plant. 2011;4:616-25. https://doi.org/10.1093/mp/ssr007
  10. Ruži? DV, Vujovi? TI. The effects of cytokinin types and their concentration on in vitro multiplication of sweet cherry cv. Lapins (Prunus avium L.). Horti Sci. 2008;35:12-21.
  11. Wang W, Zhao X, Zhuang G, Wang S, Chen F. Simple hormonal regulation of somatic embryogenesis and/or shoot organogenesis in caryopsis cultures of Pogonatherum paniceum (Poaceae). Plant cell, Tissue and Organ Cult. 2008;95:57-67. https://doi.org/10.1007/s11240-008-9414-9
  12. Bhatia S, Sharma K, Dahiya R, Bera T. Modern applications of plant biotechnology in pharmaceutical sciences. Academic Press; 2015 Jul 22. https://doi.org/10.1016/C2014-0-02123-5
  13. Collado R, Bermúdez-Caraballoso I, García LR, Veitía N, Torres D, Romero C, Martirena- Ramírez A, Angenon G. Agrobacterium-mediated transformation of Phaseolus vulgaris L. using indirect organogenesis. Sci Hortic. 2015;195:89-100. https://doi.org/10.1016/j.scienta.2015.06.046
  14. Hnatuszko-Konka K, Kowalczyk T, Gerszberg A, Wiktorek-Smagur A, Kononowicz AK. Phaseolus vulgaris Recalcitrant potential. Biotechnol Adv. 2014;32:1205-15. https://doi.org/10.1016/j.biotechadv.2014.06.001
  15. Benderradji L, Brini F, Kellou K, Ykhlef N, Djekoun A, Masmoudi K, Bouzerzour H. Callus induction, proliferation and plantlets regeneration of two bread wheat (Triticum aestivum L.) genotypes under saline and heat stress conditions. ISRN Agron. 2012;2012:8. https://doi.org/10.5402/2012/367851
  16. Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15:473-97. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  17. Kumlay AM, Ercisli S. Callus induction, shoot proliferation and root regeneration of potato (Solanum tuberosum L.) stem node and leaf explants under long-day conditions. Biotechnol Biotechnol Equip. 2015;29:1075-84. https://doi.org/10.1080/13102818.2015.1077685
  18. Goldstein CS, Kronstad WE. Tissue culture and plant regeneration from immature embryo explants of barley, Hordeum vulgare. Theor Appl Genet. 1986;71:631-36. https://doi.org/10.1007/BF00264267
  19. Holme IB, Petersen KK. Callus induction and plant regeneration from different explant types of Miscanthus x Ogiformis Honda ‘Giganteus’. Plant Cell, Tissue and Organ Cult. 1996;45:43-52. https://doi.org/10.1007/BF00043427
  20. Cassells AC. Contamination and its impact in tissue culture. In: IV International Symposium on In Vitro Culture and Horticultural Breeding 560 2000 Jul 2. Pp. 353-59. https://doi.org/10.17660/ActaHortic.2001.560.66
  21. Stobbe H, Schmitt U, Eckstein D, Dujesiefken D. Developmental stages and fine structure of surface callus formed after debarking of living lime trees (Tilia sp.). Ann Bot. 2002;89:773-82. https://doi.org/10.1093/aob/mcf137
  22. Bostock RM, Stermer BA. Perspectives on wound healing in resistance to pathogens. Annu Rev Phytopathol. 1989;27:343-71. https://doi.org/10.1146/annurev.py.27.090189.002015
  23. Iwase A, Mitsuda N, Koyama T, Hiratsu K, Kojima M, Arai T, Inoue Y, Seki M, Sakakibara H, Sugimoto K, Ohme-Takagi M. The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Curr Biol. 2011;21:508-14. https://doi.org/10.1016/j.cub.2011.02.020
  24. De Veylder L, Beeckman T, Beemster GT, de Almeida Engler J, Ormenese S, Maes S, Naudts M, Van Der Schueren E, Jacqmard A, Engler G, Inzé D. Control of proliferation, endoreduplication and differentiation by the Arabidopsis E2Fa–DPa transcription factor. The EMBO J. 2002;21:1360-38. https://doi.org/10.1093/emboj/21.6.1360
  25. Mello MO, Melo M, Appezzato-da-Glória B. Histological analysis of the callogenesis and organogenesis from root segments of Curcuma zedoaria Roscoe. Braz Arch Biol Technol. 2001;44:197-203. https://doi.org/10.1590/S1516-89132001000200014
  26. Laublin G, Saini HS, Cappadocia M. In vitro plant regeneration via somatic embryogenesis from root culture of some rhizomatous irises. Plant Cell Tissue and Organ Cult. 1991;27:15-21. https://doi.org/10.1007/BF00048200

Downloads

Download data is not yet available.