Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 13 No. 1 (2026)

A synopsis of Trichoderma viride bioformulation: Mass production techniques, methods of farm applications, challenges, limitations and future perspectives

DOI
https://doi.org/10.14719/pst.12073
Submitted
1 October 2025
Published
30-12-2025 — Updated on 08-01-2026
Versions

Abstract

Sustainable agriculture stives to enhance crop productivity while minimizing environmental degradation, emphasizing the need for eco-friendly and effective alternatives to synthetic agrochemicals. Biological control has been proven to be an effective substitute for synthetic chemicals. Among biocontrol agents (BCAs), Trichoderma viride has emerged as a well-established biocontrol fungus with multifaceted roles in plant disease management and growth promotion. This review aims to systematically evaluate biology, mechanisms of action, mass production technologies and field application methods to T. viride, highlighting its limitations and future research prospects. By consolidating and critically analyzing scattered information, this work seeks to identify knowledge gaps that can guide the development of improved formulations and practical usage strategies. Overall, T. viride demonstrates remarkable potential as sustainable bioresource for integrated disease management, improved soil health and environmental stewardship, although its commercial success depends on advances in formulation stability, contamination control and strain selection.

References

  1. 1. Kumar S, Gupta OM. Expanding dimensions of plant pathology. JNKVV Res J. 2012;46(3):286-93.
  2. 2. Hellou J. Behavioural ecotoxicology: an "early warning" signal to assess environmental quality. Environ Sci Pollut Res. 2011;18(1):1-11. https://doi.org/10.1007/s11356-010-0367-2
  3. 3. Negi R, Sharma B, Kaur S, Kaur T, Khan SS, Kumar S, et al. Microbial antagonists: diversity, formulation and applications for management of pest-pathogens. Egypt J Biol Pest Control. 2023;33(1):105. https://doi.org/10.1186/s41938-023-00748-2
  4. 4. Ghazanfar MU, Raza M, Raza W, Qamar MI. Trichoderma as potential biocontrol agent, its exploitation in agriculture: a review. Plant Prot. 2018;2(3):105-09.
  5. 5. Iftikhar Y, Sajid A, Shakeel Q, Ahmad Z, Ul Haq Z. Biological antagonism: a safe and sustainable way to manage plant diseases. In: Ul Haq I, Ijaz S, editors. Plant disease management strategies for sustainable agriculture through traditional and modern approaches. Sustainability in plant and crop protection. Cham: Springer; 2020. https://doi.org/10.1007/978-3-030-35955-3_5
  6. 6. Singh DP, Gupta VK, Prabha R, editors. Microbial interventions in agriculture and environment. Cham: Springer; 2019. https://doi.org/10.1007/978-981-13-8383-0
  7. 7. Voigt K, Kirk PM. Recent developments in the taxonomic affiliation and phylogenetic positioning of fungi: impact in applied microbiology and environmental biotechnology. Appl Microbiol Biotechnol. 2011;90:41-57. https://doi.org/10.1007/s00253-011-3143-4
  8. 8. Elhamouly NA, Hewedy OA, Zaitoon A, Miraples A, Elshorbagy OT, Hussien S, et al. The hidden power of secondary metabolites in plant-fungi interactions and sustainable phytoremediation. Front Plant Sci. 2022;13:1044896. https://doi.org/10.3389/fpls.2022.1044896
  9. 9. Kumar S, Thakur M, Rani A. Trichoderma: mass production, formulation, quality control, delivery and its scope in commercialization in India for the management of plant diseases. Afr J Agric Res. 2014;9(53):3838-52.
  10. 10. Sabalpara AN. Mass multiplication of biopesticides at farm level. J Mycol Plant Pathol. 2014;44(1):1-5.
  11. 11. Sharma P, Sharma M, Raja M, Shanmugam V. Status of Trichoderma research in India: a review. Indian Phytopathol. 2014;67(1):1-9.
  12. 12. Singh S, Kumar R, Yadav S, Kumari P, Singh RK, Kumar CR. Effect of bio-control agents on soil borne pathogens: a review. J Pharmacogn Phytochem. 2018;7(3):406-11. https://doi.org/10.22271/phyto.2024.v13.i3e.14982
  13. 13. Chaverri P, Gazis RO, Samuels GJ. Trichoderma amazonicum, a new endophytic species on Hevea brasiliensis and H. guianensis from the Amazon basin. Mycologia. 2011;103(1):139-51. https://doi.org/10.3852/10-078
  14. 14. Singh A, Shahid M, Srivastava M, Pandey S, Sharma A, Kumar V. Optimal physical parameters for growth of Trichoderma species at varying pH, temperature and agitation. Virol Mycol. 2014;3(1):1-7.
  15. 15. Mutai RC. Formulation of Trichoderma harzianum and its comparative storage stability in different substrates for the management of armillaria root rot of tea [dissertation]. Njoro (KE): Egerton University; 2015.
  16. 16. Sundaramoorthy S, Balabaskar P. Biocontrol efficacy of Trichoderma spp. against wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici. J Appl Biol Biotechnol. 2013;1(3):36-40.
  17. 17. Olowe OM, Nicola L, Asemoloye MD, Akanmu AO, Babalola OO. Trichoderma: potential bio-resource for the management of tomato root rot diseases in Africa. Microbiol Res. 2022;257:126978. https://doi.org/10.1016/j.micres.2022.126978
  18. 18. An XY, Cheng GH, Gao HX, Li XF, Yang Y, Li D, et al. Phylogenetic analysis of Trichoderma species associated with green mold disease on mushrooms and two new pathogens on Ganoderma sichuanense. J Fungi. 2022;8(7):704. https://doi.org/10.3390/jof8070704
  19. 19. Smitha C, Finosh GT, Rajesh R, Abraham PK. Induction of hydrolytic enzymes of phytopathogenic fungi in response to Trichoderma viride influence biocontrol activity. Int J Curr Microbiol Appl Sci. 2014;3(9):1207-17.
  20. 20. Latifian M, Hamidi-Esfahani Z, Barzegar M. Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions. Bioresour Technol. 2007;98(18):3634-7. https://doi.org/10.1016/j.biortech.2006.11.019
  21. 21. Kumar V, Koul B, Taak P, Yadav D, Song M. Journey of Trichoderma from pilot scale to mass production: a review. Agriculture. 2023;13(10):2022. https://doi.org/10.3390/agriculture13102022
  22. 22. Dutta P, Deb L, Pandey AK. Trichoderma-from lab bench to field application: looking back over 50 years. Front Agron. 2022;4:932839. https://doi.org/10.3389/fagro.2022.932839
  23. 23. Lahlali R, Ezrari S, Radouane N, Kenfaoui J, Esmaeel Q, El Hamss H, et al. Biological control of plant pathogens: a global perspective. Microorganisms. 2022;10(3):596. https://doi.org/10.3390/microorganisms10030596
  24. 24. Sood M, Kapoor D, Kumar V, Sheteiwy MS, Ramakrishnan M, Landi M, et al. Trichoderma: the "secrets" of a multitalented biocontrol agent. Plants. 2020;9(6):762. https://doi.org/10.3390/plants9060762
  25. 25. Paul S, Roy J, Rakshit A. Enriching soybean with two soil macronutrients through boosting root proliferation with Trichoderma viride. Mycol Prog. 2024;23(1):8. https://doi.org/10.1007/s11557-024-01948-2
  26. 26. Zhao L, Wang F, Zhang Y, Zhang J. Involvement of Trichoderma asperellum strain T6 in regulating iron acquisition in plants. J Basic Microbiol. 2014;54(S1):S115-24. https://doi.org/10.1002/jobm.201400148
  27. 27. Velmourougane K, Prasanna R, Singh S, Chawla G, Kumar A, Saxena AK. Modulating rhizosphere colonisation, plant growth, soil nutrient availability and plant defense enzyme activity through Trichoderma viride-Azotobacter chroococcum biofilm inoculation in chickpea. Plant Soil. 2017;421:157-74. https://doi.org/10.1007/s11104-017-3445-0
  28. 28. Pozo MI, Herrero B, Martín-García J, Santamaría Ó, Poveda J. Evaluating potential side effects of Trichoderma as biocontrol agent: a two-edged sword? Curr Opin Environ Sci Health. 2024;27:100566. https://doi.org/10.1016/j.coesh.2024.100566
  29. 29. Szumigaj-Tarnowska J, Szczechura W. Phenotypic characteristics, pathogenicity and molecular identification of Hypomyces perniciosus causing wet bubble disease of edible mushrooms. J Hortic Res. 2024;32(1):1. https://doi.org/10.2478/johr-2024-0002
  30. 30. Šašić Zorić L, Janjušević L, Djisalov M, Knežić T, Vunduk J, Milenković I, et al. Molecular approaches for detection of Trichoderma green mold disease in edible mushroom production. Biology. 2023;12(2):299. https://doi.org/10.3390/biology12020299
  31. 31. Hatvani L, Antal Z, Manczinger L, Szekeres A, Druzhinina IS, Kubicek CP, et al. Green mold diseases of Agaricus and Pleurotus spp. are caused by related but phylogenetically different Trichoderma species. Phytopathology. 2007;97(4):532-7. https://doi.org/10.1094/PHYTO-97-4-0532
  32. 32. Bhatnagar D, Yu J, Ehrlich KC. Toxins of filamentous fungi. Chem Immunol. 2002;81:167-206. https://doi.org/10.1159/000058867
  33. 33. Tyśkiewicz R, Nowak A, Ozimek E, Jaroszuk-Ściseł J. Trichoderma: the current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. Int J Mol Sci. 2022;23(4):2329. https://doi.org/10.3390/ijms23042329
  34. 34. Guzmán-Guzmán P, Kumar A, de Los Santos-Villalobos S, Parra-Cota FI, Orozco-Mosqueda MD, Fadiji AE, et al. Trichoderma species: our best fungal allies in the biocontrol of plant diseases-a review. Plants. 2023;12(3):432. https://doi.org/10.3390/plants12030432
  35. 35. Dutta P, Mahanta M, Singh SB, Thakuria D, Deb L, Kumari A, et al. Molecular interaction between plants and Trichoderma species against soil-borne plant pathogens. Front Plant Sci. 2023;14:1145715. https://doi.org/10.3389/fpls.2023.1145715
  36. 36. Ajayi AM, Olufolaji DB. The use of plant growth promoting microorganisms in the management of soil-borne plant pathogenic organisms. In: Mawar R, Sayyed RZ, Sharma SK, Sattiraju KS, editors. Plant growth promoting microorganisms of arid region. Singapore: Springer; 2023. https://doi.org/10.1007/978-981-19-4124-5_10
  37. 37. Mukhopadhyay R, Kumar D. Trichoderma: a beneficial antifungal agent and insights into its mechanism of biocontrol potential. Egypt J Biol Pest Control. 2020;30:1-8. https://doi.org/10.1186/s41938-020-00333-x
  38. 38. Kubiak A, Wolna-Maruwka A, Pilarska AA, Niewiadomska A, Piotrowska-Cyplik A. Fungi of the Trichoderma genus: future perspectives of benefits in sustainable agriculture. Appl Sci. 2023;13(11):6434. https://doi.org/10.3390/app13116434
  39. 39. Sánchez-Montesinos B, Santos M, Moreno-Gavíra A, Marín-Rodulfo T, Gea FJ, Diánez F. Biological control of fungal diseases by Trichoderma aggressivum f. europaeum and its compatibility with fungicides. J Fungi. 2021;7(8):598. https://doi.org/10.3390/jof7080598
  40. 40. Contreras-Cornejo HA, Macías-Rodríguez L, Del-Val EK, Larsen J. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol Ecol. 2016;92(4):fiw036. https://doi.org/10.1093/femsec/fiw036
  41. 41. Sharma B, Tiwari S, Kumawat KC, Cardinale M. Nano-biofertilizers as bio-emerging strategies for sustainable agriculture development: potentiality and their limitations. Sci Total Environ. 2023;860:160476. https://doi.org/10.1016/j.scitotenv.2022.160476
  42. 42. Asghar W, Craven KD, Kataoka R, Mahmood A, Asghar N, Raza T, et al. The application of Trichoderma spp., an old but new useful fungus, in sustainable soil health intensification. Plant Stress. 2024;2:100455. https://doi.org/10.1016/j.stress.2024.100455
  43. 43. Bisen K, Singh V, Keswani C, Ray S, Sarma BK, Singh HB. Use of biocontrol agents for the management of seed-borne diseases. In: Kumar R, Gupta A, editors. Seed-borne diseases of agricultural crops: detection, diagnosis & management. Singapore: Springer; 2020. https://doi.org/10.1007/978-981-32-9046-4_22
  44. 44. Manzar N, Kashyap AS, Goutam RS, Rajawat MV, Sharma PK, Sharma SK, et al. Trichoderma: advent of versatile biocontrol agent, its secrets and insights into mechanism of biocontrol potential. Sustainability. 2022;14(19):12786. https://doi.org/10.3390/su141912786
  45. 45. Kaur J, Goswami D, Saraf M. Response surface methodology: a comparative optimization of antifungal metabolite production by Trichoderma viride and Trichoderma harzianum using solid-state fermentation. Biomass Convers Biorefin. 2025;5:1-24. https://doi.org/10.1007/s13399-025-06575-9
  46. 46. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol. 2004;2(1):43-56. https://doi.org/10.1038/nrmicro797
  47. 47. Kumar V, Koul B, Taak P, Yadav D, Song M. Journey of Trichoderma from pilot scale to mass production: a review. Agriculture. 2023;13(10):2022. https://doi.org/10.3390/agriculture13102022
  48. 48. Parkash V, Saikia AJ. Production and multiplication of native compost fungal activator by using different substrates and its influence on growth and development of Capsicum chinensis Jacq. "Bhut Jolokia". Biotechnol Res Int. 2015;2015:481363. https://doi.org/10.1155/2015/481363
  49. 49. Naeimi S, Khosravi V, Varga A, Vágvölgyi C, Kredics L. Screening of organic substrates for solid-state fermentation, viability and bioefficacy of Trichoderma harzianum AS12-2 against rice sheath blight disease. Agronomy. 2020;10(9):1258. https://doi.org/10.3390/agronomy10091258
  50. 50. Prasad RD, Rangeshwaran R, Hegde SV, Anuroop CP. Effect of soil and seed application of Trichoderma harzianum on pigeonpea wilt caused by Fusarium udum under field conditions. Crop Prot. 2002;21(4):293-7. https://doi.org/10.1016/S0261-2194(01)00100-4
  51. 51. Lima PC, Karimian P, Johnston E, Hartley CJ. The use of Trichoderma spp. for the bioconversion of agro-industrial waste biomass via fermentation: a review. Fermentation. 2024;10(9):442. https://doi.org/10.3390/fermentation10090442
  52. 52. Sudha A, Praveen V, Amala A, Ramalakshmi A, Ramjegathesh R, Fanish S, et al. Expedition of Trichoderma formulations: production to storage in India-a review. J Environ Biol. 2024;45(4):363-71. https://doi.org/10.22438/jeb/45/4/MRN-5290
  53. 53. Ramanujam B, Prasad RD, Sriram S, Rangeswaran R. Mass production, formulation, quality control and delivery of Trichoderma for plant disease management. J Plant Prot Sci. 2010;2(2):1-8.
  54. 54. Kumar S, Thakur M, Rani A. Trichoderma: mass production, formulation, quality control, delivery and its scope in commercialization in India for the management of plant diseases. Afr J Agric Res. 2014;9(53):3838-52.
  55. 55. Kumar V, Shahid M, Srivastava M, Singh A, Pandey S, Sharma A. Enhancing seed germination and vigor of chickpea using effective strains of Trichoderma species. Virol Mycol. 2014;3:1-7. https://doi.org/10.4172/2161-0517.1000128
  56. 56. Martinez Y, Ribera J, Schwarze FW, De France K. Biotechnological development of Trichoderma-based formulations for biological control. Appl Microbiol Biotechnol. 2023;107(18):5595-612. https://doi.org/10.1007/s00253-023-12687-x
  57. 57. Lewis JA, Lumsden RD. Biocontrol of damping-off of greenhouse-grown crops caused by Rhizoctonia solani with a formulation of Trichoderma spp. Crop Prot. 2001;20(1):49-56. https://doi.org/10.1016/S0261-2194(00)00052-1
  58. 58. Khan AA, Sinha AP. Influence of different factors on the effectivity of fungal bioagents to manage rice sheath blight in nursery. Indian Phytopathol. 2005;58(3):289-93.
  59. 59. Khan AA, Sinha AP. Screening of Trichoderma spp. against Rhizoctonia solani, the causal agent of rice sheath blight. Indian Phytopathol. 2007;60(4):450-6.
  60. 60. Sinha B, Rajendran P, Devi PS. Mass production of Trichoderma from agricultural waste and its application for plant disease management. In: Handbook of solid waste management: sustainability through circular economy. Singapore: Springer Nature; 2022. p. 619-33. https://doi.org/10.1007/978-981-16-4230-2_32
  61. 61. Bokhtiar SM, Roksana S, Moslehuddin AZM. Soil fertility and productivity of sugarcane influenced by enriched pressmud compost with chemical fertilizers. SAARC J Agric. 2015;13(2):183-97. https://doi.org/10.3329/sja.v13i2.26579
  62. 62. Lee J, Sarmah AK, Kwon EE. Production and formation of biochar. In: Biochar from Biomass and Waste. Elsevier; 2019. p. 3-18. https://doi.org/10.1016/B978-0-12-811729-3.00001-7
  63. 63. Zhao J, Shen XJ, Domene X, Alcañiz JM, Liao X, Palet C. Comparison of biochars derived from different types of feedstock and their potential for heavy metal removal in multiple-metal solutions. Sci Rep. 2019;9(1):9869. https://doi.org/10.1038/s41598-019-46234-4
  64. 64. Singh AS, Panja B, Shah J. Evaluation of suitable organic substrates-based Trichoderma harzianum formulation for managing Rhizoctonia solani causing collar rot disease of cowpea. Int J Curr Microbiol Appl Sci. 2014;3(8):127-34.
  65. 65. Komala G, Madhavi GB, Nath RA. Shelf life studies of different formulations of Trichoderma harzianum. Plant Cell Biotechnol Mol Biol. 2019;20:1100-5.
  66. 66. Pandey KK. Evaluation of different agricultural-based substrates for mass multiplication of Trichoderma viride. Indian Phytopathol. 2009;62(4):530-2.
  67. 67. Nduka BA, Oduwaye OF, Adewale DB. Potential of Streptomyces sp. and Trichoderma sp. as compost microbiota for coffee husk. Afr J Microbiol Res. 2017;11(14):560-7. https://doi.org/10.5897/AJMR2017.8476
  68. 68. Mamo Z, Alemu T. Evaluation and optimization of agro-industrial wastes for conidial production of Trichoderma isolates under solid-state fermentation. J Appl Biosci. 2012;54:3870-9.
  69. 69. Balasubramanian C, Udayasooriyan P, Prabhu C, Kumar GS. Enriched compost for yield and quality enhancement in sugarcane. J Ecobiol. 2008;22:173-6.
  70. 70. Batta YA. Postharvest biological control of apple gray mold by Trichoderma harzianum Rifai formulated in an invert emulsion. Crop Prot. 2004;23(1):19-26. https://doi.org/10.1016/S0261-2194(03)00163-7
  71. 71. Ahamedemujtaba V, Kulkarni S. Shelf life of Trichoderma harzianum, an antagonist, in different oil-based formulations. IRA Int J Appl Sci. 2017;6(2):34-40. https://doi.org/10.21013/jas.v6.n2.p2
  72. 72. Xue AG, Guo W, Chen Y, Siddiqui I, Marchand G, Liu J, et al. Effect of seed treatment with novel strains of Trichoderma spp. on establishment and yield of spring wheat. Crop Prot. 2017;96:97-102. https://doi.org/10.1016/j.cropro.2017.02.003
  73. 73. Jegathambigai V, Wijeratnam RW, Wijesundera RLC. Trichoderma as a seed treatment to control Helminthosporium leaf spot disease of Chrysalidocarpus lutescens. World J Agric Sci. 2009;5(6):720-8.
  74. 74. Singh D, Maheshwar V. Biological seed treatment for the control of loose smut of wheat. Indian Phytopathol. 2001;54(4):457-60.
  75. 75. Bisen K, Keswani C, Mishra S, Saxena A, Rakshit A, Singh HB. Unrealized potential of seed biopriming for versatile agriculture. In: Rakshit A, Singh HB, Sen A, editors. Nutrient Use Efficiency: From Basics to Advances. New Delhi: Springer; 2015. p. 193-206. https://doi.org/10.1007/978-81-322-2169-2_13
  76. 76. Mishra DS, Singh US, Dwivedi TS. Comparative efficacy of normal seed treatment and seed biopriming with commercial formulations of Trichoderma spp. In: Proceedings of the 53rd Annual Meeting of Indian Phytopathological Society and National Symposium on Eco Friendly Approaches for Trichoderma; 2001; Chennai, India. p. 21-3.
  77. 77. Yadav SK, Dave A, Sarkar A, Singh HB, Sharma BK. Co-inoculated biopriming with Trichoderma, Pseudomonas and Rhizobium improves crop growth in Cicer arietinum and Phaseolus vulgaris. Int J Agric Biol. 2013;6(2):255-9.
  78. 78. Naveen B, Reddy YS. Estimation of beneficial and harmful microorganisms of soil. Emerg Issues Agric Sci. 2023;6:183-92. https://doi.org/10.9734/bpi/eias/v6/5876A
  79. 79. Reddy K, Krishnamma, Narayana P. Efficacy of Trichoderma viride against Colletotrichum falcatum in sugarcane. Indian J Plant Prot. 2009;37:111-5.
  80. 80. Srivastava S, Singh RK, Kumar RKN, Singh S. Management of Macrophomina disease complex in jute (Corchorus olitorius) by Trichoderma viride. J Biol Control. 2010;24(1):77-9.
  81. 81. Mustafa A, Khan MA, Inam-ul-Haq M, Khan SH, Pervez MA. Mass multiplication of Trichoderma spp. on organic substrate and their effect in management of seed-borne fungi. Pak J Phytopathol. 2009;21(2):108-14.
  82. 82. Puyam A. Advent of Trichoderma as a bio-control agent: A review. J Appl Nat Sci. 2016;8(2):1100-9. https://doi.org/10.31018/jans.v8i2.927
  83. 83. Singh US, Zaidi NW. Current status of formulation and delivery of fungal and bacterial antagonists for disease management in India. In: Microbial Biopesticide Formulations and Application. 2002. p. 168-79.
  84. 84. Delai C, Muhae-Ud-Din G, Abid R, Tian T, Liu R, Xiong Y, et al. A comprehensive review of integrated management strategies for damping-off disease in chili. Front Microbiol. 2024;15:1479957. https://doi.org/10.3389/fmicb.2024.1479957
  85. 85. Chakraborty A. Management of pre- and post-emergence damping-off of nursery seedlings of brinjal by seed coating with bio-antagonists vis-à-vis soil application with plant products: An integrated approach.
  86. 86. Mishra D, Rajput RS, Zaidi NW, Singh HB. Sheath blight and drought stress management in rice (Oryza sativa) through Trichoderma spp. Indian Phytopathol. 2020;73(1):71-7. https://doi.org/10.1007/s42360-019-00189-8
  87. 87. Sonkar SS, Bhatt J, Meher J, Kashyap P. Bio-efficacy of Trichoderma viride against the root-knot nematode (Meloidogyne incognita) in tomato plant. J Pharmacogn Phytochem. 2018;7(6):2010-4. https://doi.org/10.20546/ijcmas.2018.711.193
  88. 88. Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N, et al. Trichoderma-based products and their widespread use in agriculture. Open Mycol J. 2014;8(1):7-24. https://doi.org/10.2174/1874437001408010071
  89. 89. Di Vaio C, Testa A, Cirillo A, Conti S. Slow-release fertilization and Trichoderma harzianum-based biostimulant for the nursery production of young olive trees (Olea europaea L.). Agron Res. 2021;19:1396-405.
  90. 90. Andrews JH. Biological control in the phyllosphere. Annu Rev Phytopathol. 1992;30:603-35. https://doi.org/10.1146/annurev.py.30.090192.003131
  91. 91. Behairy MH, Sobhy HM, Abbas MS, Abada KA, Mourad MY. Alternaria leaf spot disease control on faba bean in Egypt. J Plant Prot Pathol. 2014;5(1):119-30. https://doi.org/10.21608/jppp.2014.87881
  92. 92. Sharma P, Patel AN, Saini MK, Deep S. Field demonstration of Trichoderma harzianum as a plant growth promoter in wheat (Triticum aestivum L.). J Agric Sci. 2012;4(8):65-73. https://doi.org/10.5539/jas.v4n8p65
  93. 93. Singh D, Kapur SP, Singh K. Management of citrus scab caused by Elsinoe fawcettii. Indian Phytopathol. 2000;53(4):461-7.
  94. 94. Sharma KK. Trichoderma in agriculture: An overview of global scenario on research and its application. Int J Curr Microbiol Appl Sci. 2018;7:1922-33. https://doi.org/10.20546/ijcmas.2018.708.221
  95. 95. Shetty GP, Meghana A, Kumar S, Shetty MG, Maranabasari S, Niranjan HG, et al. Beyond biocontrol agent: A review on the future of Trichoderma. Int J Adv Biochem Res. 2024;8(5):125-32. https://doi.org/10.33545/26174693.2024.v8.i5b.1065
  96. 96. Carreras-Villaseñor N, Sánchez-Arreguín JA, Herrera-Estrella AH. Trichoderma: sensing the environment for survival and dispersal. Microbiology. 2012;158(1):3-16. https://doi.org/10.1099/mic.0.052688-0
  97. 97. Zin NA, Badaluddin NA. Biological functions of Trichoderma spp. for agriculture applications. Ann Agric Sci. 2020;65(2):168-78. https://doi.org/10.1016/j.aoas.2020.09.003
  98. 98. de la Cruz Quiroz R, Cruz Maldonado JJ, Rostro Alanis MDJ, Torres JA, Parra Saldívar R. Fungi-based biopesticides: shelf-life preservation technologies used in commercial products. J Pest Sci. 2019;92:1003-15. https://doi.org/10.1007/s10340-019-01117-5
  99. 99. Siddiqui AG, Sikhwal AA, Soni SD, Awasthi RS, Bhandare SS, Tambhale SDD. Exploring the beneficial properties of Trichoderma viride and development of economic medium for its mass production. [Journal details unavailable].
  100. 100. Khandelwal M, Datta S, Mehta J, Naruka R, Makhijani K, Sharma G, et al. Isolation, characterization and biomass production of Trichoderma viride using various agro products: A biocontrol agent. Adv Appl Sci Res. 2012;3(6):3950-5.
  101. 101. Thangavelu R, Mustaffa M. A potential isolate of Trichoderma viride NRCB1 and its mass production for the effective management of Fusarium wilt disease in banana. Tree For Sci Biotechnol. 2010;4:76-84.
  102. 102. Nathan VK, Esther Rani M, Rathinasamy G, Dhiraviam KN, Jayavel S. Process optimization and production kinetics for cellulase production by Trichoderma viride VKF3. SpringerPlus. 2014;3:92. https://doi.org/10.1186/2193-1801-3-92
  103. 103. Simon S, Anamika. Agro-based waste products as a substrate for mass production of Trichoderma spp. J Agric Sci. 2011;3(4):168-74. https://doi.org/10.5539/jas.v3n4p168
  104. 104. Verma M, Brar SK, Tyagi RD, Surampalli RY, Valéro JR. Starch industry wastewater as a substrate for antagonist Trichoderma viride production. Bioresour Technol. 2007;98(11):2154-62. https://doi.org/10.1016/j.biortech.2006.08.032
  105. 105. Asghar W, Kataoka R. Effect of co-application of Trichoderma spp. with organic composts on plant growth enhancement, soil enzymes and fungal community in soil. Arch Microbiol. 2021;203(7):4281-91. https://doi.org/10.1007/s00203-021-02413-4
  106. 106. Viji VS, Veena SS, Karthikeyan S, Jeeva ML. Cassava-based substrates as conducive media for mass multiplication of Trichoderma asperellum. J Root Crops. 2018;44(1):41-6.
  107. 107. Gopalakrishnan C, Ramanujam B, Prasad RD, Rao NS, Rabindra RJ. Use of brewery waste-amended spent malt as substrate for mass production of Trichoderma. J Biol Control. 2003;17(2):167-70.
  108. 108. Pandya JR, Sabalpara AN, Vekariya PV. Mass multiplication of Trichoderma harzianum (THCh-1) in agro-substrates. Plant Dis Res. 2018;33(1):60-3.
  109. 109. Bhale UN. Prospective of agricultural wastes as base resources for mass multiplication of Trichoderma species worldwide: An overview. Int J Curr Res. 2016;8(1):24968-78.
  110. 110. Leggett M, Leland J, Kellar K, Epp B. Formulation of microbial biocontrol agents: An industrial perspective. Can J Plant Pathol. 2011;33(2):101-7. https://doi.org/10.1080/07060661.2011.563050
  111. 111. Mawar R, Manjunatha BL, Kumar S. Commercialization, diffusion and adoption of bioformulations for sustainable disease management in Indian arid agriculture: Prospects and challenges. Circ Econ Sustain. 2021;1(4):1367-85. https://doi.org/10.1007/s43615-021-00089-y

Downloads

Download data is not yet available.