Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 8 No. 3 (2021)

In silico promoter and expression analyses of rice Auxin Binding Protein 57 (ABP57)

DOI
https://doi.org/10.14719/pst.2021.8.3.1208
Submitted
13 April 2021
Published
01-07-2021

Abstract

Auxin Binding Protein 57 (ABP57) is one of the molecular components involved in rice response to abiotic stress. The ABP57 gene encodes an auxin receptor which functions in activating the plasma membrane H+-ATPase. Biochemical properties of ABP57 have been characterized; however, the function of ABP57, particularly on stress and hormone responses is still limited. This study was conducted to understand the regulation of ABP57 expression under abiotic stress. Thus, in silico identification of cis-acting regulatory elements (CAREs) in the promoter region of ABP57 was performed. Several motifs and transcription factor binding site (TFBS) that are involved in abiotic stress such as ABRE, DRE, AP2/EREBP, WRKY and NAC were identified. Next, expression analysis of ABP57 under drought, salt, auxin (IAA) and abscisic acid (ABA) was conducted by reverse transcription-PCR (RT-PCR) to verify the effect of these treatments on ABP57 transcript level. ABP57 was expressed at different levels in the shoot and root under drought conditions, and its expression was increased under IAA and ABA treatments. Moreover, our results showed that ABP57 expression in the root was more responsive to drought, auxin and ABA treatments compared to its transcript in the shoot. This finding suggests that ABP57 is a drought-responsive gene and possibly regulated by IAA and ABA.

References

  1. Kohli A, Sreenivasulu N, Lakshamanan P, Kumar PP. The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Rep. 2013; 32(7): 945-57. https://doi.org/10.1007/s00299-013-1461-y
  2. Ng LM, Melcher K, Teh BT, Xu HE. Abscisic acid perception and signaling: Structural mechanisms and applications. Acta Pharmacol Sin. 2014;35:567–84. https://doi.org/10.1038/aps.2014.5
  3. Sah SK, Reddy KR, Li J. Abscisic acid and abiotic stress tolerance in crop plants. Front. Plant Sci. 2016;7(571):1–26. https://doi.org/10.3389/fpls.2016.00571
  4. Harris, JM. Abscisic acid: Hidden architect of root system structure. Plants (Basel.) 2015;4(3):548-72. https://doi.org/10.3390/plants4030548
  5. Gómez-Porras JL, Riaño-Pachón DM, Dreyer I, Mayer JE, Mueller-Roeber B. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice. BMC Genomics. 2007;8(260) https://doi.org/10.1186/1471-2164-8-260
  6. Zou C, Sun K, Mackaluso JD, Seddon AE, Jin R, Thomashow MF, Shiu S-H. Cis-regulatory code of stress-responsive transcription in Arabidopsis thaliana. Proc Nat Acad USA. 2011; 108(36): 14992-97. https://doi.org/10.1073/pnas.1103202108
  7. Hernandez-Gracia CM, Finer JJ. Identification and validation of promoters and cis-acting regulatory elements. Plant Sc. 2014;218:109-19. https://doi.org/10.1016/j.plantsci.2013.12.007
  8. Hobo T, Asada M, Kowyama Y, Hattori T. ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent. Plant J. 1999;19(6):679-89. https://doi.org/10.1046/j.1365-313x.1999.00565.x
  9. Choi HI, Hong JH, Ha JO, Kang JY, Kim SY. ABFs, a family of ABA-responsive element binding factors. J Biol Chem. 2000;275(3):1723-30. https://doi.org/10.1074/jbc.275.3.1723
  10. Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Nat Acad. USA. 2000;97(21):11632-37. https://doi.org/10.1073/pnas.190309197
  11. Singh D, Laxmi A. Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Front Plant Sci. 2015;6:895. https://doi.org/10.3389/fpls.2015.00895
  12. Zhao, Y. Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol. 2010;61:49-64. https://doi.org/10.1146/annurev-arplant-042809-112308
  13. Liu J, Rowe J, Lindsey K. Hormonal crosstalk for root development: A combined experimental and modeling perspective. Front Plant Sci. 2014;5(116):1-8. https://doi.org/10.3389/fpls.2014.00116
  14. Xu W, Jia L, Shi W, Liang J, Zhou F, Li Q, Zhang J. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. New Phytol. 2013;197(1):139–50. https://doi.org/10.1111/nph.12004
  15. Rowe JH, Topping JF, Liu J, Lindsey K. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. New Phytol. 2016;211(1):225–39. https://doi.org/10.1111/nph.13882
  16. Abel S, Theologis A. Early genes and auxin action. Plant Physiol. 1996;111:9–17. https://doi.org/10.1104/pp.111.1.9
  17. Leyser, O. Auxin signalling. Plant Physiol. 2018;176(1):465-79. https://doi.org/10.1104/pp.17.00765
  18. Sauer M, Kleine-Vehn J. Auxin Binding Protein 1: The outsider. Plant Cell. 2011;23(6):2033–43. https://doi.org/10.1105/tpc.111.087064
  19. Yamagami M, Haga K, Napier RM, Iino M. Two distinct signaling pathway participate in auxin-induced swelling of pea epidermal protoplast. Plant Physiol. 2004;134:735–47. https://doi.org/10.1104/pp.103.031294
  20. Kim YS, Kim D, Jung J. Isolation of a novel auxin receptor from soluble fractions of rice (Oryza sativa L.) shoots. FEBS Letters. 1998;438(3):241-44. https://doi.org/10.1016/S0014-5793(98)01307-6
  21. Kim YS, Min JK, Kim D, Jung J. Soluble auxin-binding protein, ABP57 purification with anti-bovine serum albumin antibody and characterization of its mechanistic role in the auxin effect on plant plasma membrane H+-ATPase. J Biol Chem. 2001;276(14):10730-36. https://doi.org/10.1074/jbc.M009416200
  22. Lee K, Kim MI, Kwon YJ, Kim M, Kim YS, Kim D. Cloning and characterization of a gene encoding ABP57, a soluble auxin-binding protein. Plant Biotechnol Rep. 2009;3:293-99. https://doi.org/10.1007/s11816-009-0101-z
  23. Kamarudin ZS, Shamsudin NAA, Che Othman MH, Shakri T, Tan LW, Sukiran NL, Md Isa N, Ab Rahman Z, Zainal Z. Morpho-physiology and antioxidant enzyme activities of transgenic rice plant overexpressing ABP57 under reproductive stage drought condition. Agronomy 2020; 10(1530):1-14. https://doi.org/10.3390/agronomy10101530
  24. Tan LW, Ab Rahman Z, Goh HH, Hwang DJ, Ismail I, Zainal Z. Production of transgenic rice (indica cv. MR219) overexpressing ABP57 gene through Agrobacterium-mediated transformation. Sains Malaysiana 2017;46:703-11. https://doi.org/10.17576/jsm-2017-4605-04
  25. Tan LW, Tan CS, Ab Rahman Z, Hossein HM, Goh HH, Ismail I, Zainal Z. Overexpression of Auxin Binding Protein 57 from rice (Oryza sativa L.) increased drought and salt tolerance in transgenic Arabidopsis thaliana. IOP Conf. Ser.: Earth Environ Sci. 2018;197:1-9. https://doi.org/10.1088/1755-1315/197/1/012038
  26. Zambrose ZA, Mohd Roszelin SA, Mohd Hazbir NA, Chew BL, Jasmali SS, Wan Yahya WA, Md Isa N. Effect of rice Auxin Binding Protein 57 (OsABP57) overexpression in response to flooding. 2020;125-33. https://doi.org/10.17265/2161-6264/2020.03.001
  27. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS. Phytozome: a comparative platform for green plant genomics. 2012;40:1178-86. https://doi.org/10.1093/nar/gkr944
  28. Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res. 1999;27(1):297-300. https://doi.org/10.1093/nar/27.1.297
  29. Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002;30(1):325-27. https://doi.org/10.1093/nar/30.1.325
  30. Chow CN, Lee TY, Hung YC, Li GZ, Tseng KC, Liu YH, Kuo PL, Zheng HQ, Chang WC. PlantPAN3.0: a new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants. Nucleic Acids Res. 2019;8(47):1155-63. https://doi.org/10.1093/nar/gky1081
  31. Baharuddin FA, Zainal Z, Sukiran NL. Morphological changes analysis of rice cv. IR64 under drought stress. AIP Conference Proceedings. 2019;2111(1):040003. https://doi.org/10.1063/1.5111242
  32. Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics. 2017;18(529):1–26. https://doi.org/10.1186/s12859-017-1934-z
  33. Duncan DB. Multiple range and multiple F-tests. Biometrics. 1955;11(1):1-42.
  34. Singhal P, Jan AT, Azam M, Haq MR. Plant abiotic stress: A prospective strategy of exploiting promoters as alternative to overcome escalating burden. Front Life Sc. 2016;9(1):52-63. https://doi.org/10.1080/21553769.2015.1077478
  35. Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci. 2006;10:88–94. https://doi.org/10.1016/j.tplants.2004.12.012
  36. Kim JS, Mizoi J, Yoshida T, Fujita Y, Nakajima J, Ohori T, Todaka D, Nakashima K, Hirayama T, Shinozaki K, Yamaguchi-Shinozaki K. An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis. Plant Cell Physiol. 2011; 52(12): 2136-46. https://doi.org/10.1093/pcp/pcr143
  37. Yang X, Yang YN, Xue LJ, Zou MJ, Liu JY, Chen F, Xue HW. Rice ABI5-Like1 regulates abscisic acid and auxin responses by affecting the expression of ABRE-containing genes. Plant Physiol. 2011;156:1397-1409. https://doi.org/10.1104/pp.111.173427
  38. Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K. Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J. 2004; 38(6):982-93. https://doi.org/10.1111/j.1365-313X.2004.02100.x
  39. Jiang C, Iu B, Singh J. Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol Biol. 1996;30:679-84. https://doi.org/10.1007/BF00049344
  40. Wang C, Gao G, Cao S, Xie Q, Qi H. Isolation and functional validation of the CmLOX08 promoter associated with signalling molecule and abiotic stress responses in oriental melon, Cucumis melo var. makuwa Makino. BMC Plant Biol. 2019;19:75-89. https://doi.org/10.1186/s12870-019-1678-1
  41. Gujjar RS, Akhtar M, Singh M. Transcription factors in abiotic stress tolerance. Ind. J. Plant Physiol. 2014;19:306-16. https://doi.org/10.1007/s40502-014-0121-8
  42. Xie Z, Nolan TM, Jiang H, Yin Y. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis. Front Plant Sci. 2019;10(228):1-17. https://doi.org/10.3389/fpls.2019.00228
  43. Eulgem T, Rushton PJ, Robatzek S, Somssich IE. The WRKY superfamily of plant transcription factors. Trends in Plant Sci. 2000; 5(5): 199-206. https://doi.org/10.1016/S1360-1385(00)01600-9
  44. Powers SK, Strader LC. Regulation of auxin transcriptional responses. Dev Dyn. 2020; 249(4):483-95. https://doi.org/10.1002/dvdy.139
  45. Teale WD, Paponov IA, Palme K. Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol. 2006;7:847-59. https://doi.org/10.1038/nrm2020
  46. Paponov IA, Paponov M, Teale W, Menges M, Chakrabortee S, Murray JAH, Palme K. Comprehensive transcriptome analysis of auxin responses in Arabidopsis. Mol Plant. 2008;1(2):321–37. https://doi.org/10.1093/mp/ssm021

Downloads

Download data is not yet available.