Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Integrated nutrient management as a strategy for higher production of pearl millet and wheat under saline water irrigation on sandy loam soils of Haryana

DOI
https://doi.org/10.14719/pst.12123
Submitted
4 October 2025
Published
04-01-2026
Versions

Abstract

The poor quality irrigation water is a major cause of the development of soil salinity and reduced agricultural production in the arid and semiarid areas. Although pearl millet and wheat are moderately salinity-tolerant crops, their productivity is affected by salinity to a large extent. A field experiment was conducted to evaluate the effect of integrated nutrient management on yield and yield attributes of pearl millet and wheat under saline water irrigation during 2022-23 and 2023-24. The experiment consisted of twelve treatments, viz. T1 [(75 % recommended dose of fertilizers (RDF)], T2 (100 % RDF), T3 [75 % RDF + ST-3 (Azotobacter chroococcum)], T4 (100 % RDF + ST-3), T5 [75 % RDF + 2.5 t ha-1 biogas slurry (BGS) + ST-3], T6 (100 % RDF + 2.5 t ha-1 BGS + ST-3), T7 [75 % RDF + 2.5 t ha-1 vermicompost (VC) + ST-3], T8 (100 % RDF + 2.5 t ha-1 VC + ST-3), T9 [75 % RDF + 10 t ha-1 farm yard manure (FYM) + biomix], T10 (100 % RDF + 10 t ha-1 FYM + biomix), T11 (75 % RDF + 2.5 t ha-1 VC + biomix) and T12 (100 % RDF + 2.5 t ha-1 VC + biomix). Results revealed that the number of effective tillers per meter row length, earhead/spike length and the plant height increased with integrated nutrient management and maximum values of these parameters were observed under T10. However, these parameters decreased under the sole application of inorganic fertilisers under saline water irrigation in both pearl millet and wheat crops. The highest grain and stover yield, viz. 27.43 and 78.19 q ha-1 of pearl millet; grain and straw yield of wheat, viz. 38.66 and 55.18 q ha-1 was also reported under treatment T10.

References

  1. 1. Shahid SA, Zaman M, Heng L. Introduction to soil salinity, sodicity and diagnostics techniques. In: Pharis RP, Zaman S, Zaczek M, editors. Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Cham: Springer International Publishing; 2018. p. 1–42. https://doi.org/10.1007/978-3-319-96190-3_1
  2. 2. ICAR–All India Coordinated Pearl Millet Research Project. Pearl millet newsletter. Jodhpur: ICAR-AICRP on Pearl Millet; 2020.
  3. 3. Ramadas S, Kumar TK, Singh GP. Wheat production in India: trends and prospects. In: Shah F, Khan Z, Iqbal A, Turan M, Olgun M, editors. Recent advances in grain crops research. London: IntechOpen; 2019. https://doi.org/10.5772/intechopen.86341
  4. 4. Zhang H, Zhu J, Gong Z, Zhu JK. Abiotic stress responses in plants. Nat Rev Genet. 2022;23(2):104–19. https://doi.org/10.1038/s41576-021-00413-0
  5. 5. Elmeknassi M, Elghali A, de Carvalho HW, Laamrani A, Benzaazoua M. A review of organic and inorganic amendments to treat salinesodic soils: emphasis on waste valorization for a circular economy approach. Sci Total Environ. 2024;921:171087. https://doi.org/10.1016/j.scitotenv.2024.171087
  6. 6. Isayenkov SV. Physiological and molecular aspects of salt stress in plants. Cytol Genet. 2012;46(5):302–18. https://doi.org/10.3103/S0095452712050046
  7. 7. Zaman M, Shahid SA, Heng L. Irrigation water quality. In: Pharis RP, Zaman S, Zaczek M, editors. Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Cham: Springer Nature; 2018. p. 113–31. https://doi.org/10.1007/978-3-319-96190-3_5
  8. 8. Kumar R, Singh MP, Kumar S. Growth analysis of wheat (Triticum aestivum L.) genotypes under saline condition. Int J Sci Technol Res. 2011;1(6):19–23.
  9. 9. Thumar CM, Dhdhat MS, Chaudhari NN, Hadiya NJ, Ahir NB. Growth, yield attributes, yield and economics of summer pearl millet (Pennisetum glaucum L.) as influenced by integrated nutrient management. Int J Agric Sci. 2016;8(54):2833–6.
  10. 10. Kumar P, Kumawat P, Prakash R, Singh H, Kumari V. Integrated nutrient management approaches in pearl millet: a comprehensive review. Int J Educ Manag Stud. 2024;14(3):335–9.
  11. 11. Bhargavi T, Mosha K, Luther MM, Subbaiah PV, Swetha N. Productivity and quality enhancement of pearl millet (Pennisetum glaucum) through integrated use of organic and inorganic sources of nitrogen. Biol Forum. 2021;13(2):444–8.
  12. 12. Jackson ML. Soil chemical analysis. New Delhi: Prentice Hall of India Pvt Ltd; 1973. p. 151–4.
  13. 13. Richards LA, Allison LE, Bernstein L, Bower CA, Brown JW, Fireman M, et al. Diagnosis and improvement of saline and alkali soils. Washington (DC): In: Richards LA, editor. United States Department of Agriculture; 1954. (USDA Agricultural Handbook No. 60). p. 84–156.
  14. 14. Snell FD, Snell CT. Colorimetric methods of analysis. 3rd ed. New York: D Van Nostrand Company; 1950.
  15. 15. Jackson ML. Soil chemical analysis. New Delhi: Prentice Hall of India Pvt Ltd; 1967.
  16. 16. Lindsay WL, Norvell W. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc Am J. 1978;42(3):421–8. https://doi.org/10.2136/sssaj1978.03615995004200030009x
  17. 17. Piper CS. Soil and plant analysis. Adelaide: University of Adelaide; 1944.
  18. 18. Walkley A, Black IA. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934;37(1):29–38. https://doi.org/10.1097/00010694-193401000-00003
  19. 19. Subbiah BV, Asija GL. A rapid procedure for the estimation of available nitrogen in soils. Curr Sci. 1956;25(8):259–60.
  20. 20. Olsen SR. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Washington (DC): United States Department of Agriculture; 1954.
  21. 21. Sheoran OP, Tonk DS, Kaushik LS, Hasija RC, Pannu RS. Statistical software package for agricultural research workers. In: Hooda DS, Hasija RC, editors. Recent advances in information theory, statistics & computer applications. Hisar: CCS HAU; 1998. p. 139–43.
  22. 22. Manchanda G, Garg N. Salinity and its effects on the functional biology of legumes. Acta Bot Croat. 2008;67(2):115–34.
  23. 23. Kingsbury RW, Epstein E, Pearcy RW. Physiological responses to salinity in selected lines of wheat. Plant Physiol. 1984;74(2):417–23. https://doi.org/10.1104/pp.74.2.417
  24. 24. Ankush, Prakash R, Kumar R, Singh V, Harender, Singh VK. Soil microbial and nutrient dynamics influenced by irrigation-induced salinity and sewage sludge incorporation in sandy-loam textured soil. Int Agrophys. 2020;34(4):451–62. https://doi.org/10.31545/intagr/128775
  25. 25. Singh C, Prakash R, Kumar R, Kumari S, Kumari G. Impact of farm yard manure, sewage sludge and fertilizer levels on soil fertility, enzymatic activity, cotton-wheat nutrition and heavy metal accumulation under saline water irrigation. Int J Environ Res. 2025;19(6):224. https://doi.org/10.1007/s41742-025-00904-6
  26. 26. Idris M. Effect of integrated use of mineral, organic N and Azotobacter on yield, yield components and nutrition of wheat (Triticum aestivum L.). J Agron. 2003;2(3):152–61.
  27. 27. Snezana D, Nenad D, Vesna T, Olga N, Mirjana G. The influence of seed bacterial inoculation on productivity of various wheat varieties. PKB Agroekon. 2005;11:41–8.
  28. 28. Litardo RC, Bendezú SJ, Zenteno MD, Pérez-Almeida IB, Parismoreno LL, García ED. Effect of mineral and organic amendments on rice growth and yield in saline soils. J Saudi Soc Agric Sci. 2022;21(1):29–37. https://doi.org/10.1016/j.jssas.2021.06.015
  29. 29. Creus CM, Sueldo RJ, Barassi CA. Shoot growth and water status in Azospirillum-inoculated wheat seedlings grown under osmotic and salt stresses. Plant Physiol Biochem. 1997;35(12):939–44.
  30. 30. Rothballer M, Schmid M, Fekete A, Hartmann A. Comparative in situ analysis of ipdC–gfpmut3 promoter fusions of Azospirillum brasilense strains Sp7 and Sp245. Environ Microbiol. 2005;7(11):1839–46. https://doi.org/10.1111/j.1462-2920.2005.00848.x
  31. 31. Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma. 2005;125(1–2):155–66. https://doi.org/10.1016/j.geoderma.2004.07.003
  32. 32. Egamberdieva D. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol. 2007;36(2–3):184–9. https://doi.org/10.1016/j.apsoil.2007.02.005
  33. 33. Tawfik MM, Abd El Lateef EM, Amany AB, Hozyn M. Prospect of biofertilizer inoculation for increasing saline irrigation efficiency. Res J Agric Biol Sci. 2011;7(2):182–9.
  34. 34. Hamdia MA, Shaddad MA, Doaa MM. Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul. 2004;44(2):165–74. https://doi.org/10.1023/B:GROW.0000049414.03099.9b
  35. 35. Ragab AA, Hellal FA, Abd El-Hady M. Water salinity impacts on some soil properties and nutrients uptake by wheat plants in sandy and calcareous soil. Aust J Basic Appl Sci. 2008;2(2):225–33.
  36. 36. Ghuman BS, Choudhary OP, Singh RS, Singh K, Brar JS, Singh A, et al. Effect of saline water irrigation on soil properties and yield and quality of sugarcane (Saccharum officinarum). Indian J Agric Sci. 2010;80(8):749–52.
  37. 37. Salih HO, Kia DR. Effect of salinity level of irrigation water on cowpea (Vigna unguiculata) growth. J Agric Vet Sci. 2013;6(3):37–41.
  38. 38. Egamberdieva D, Renella G, Wirth S, Islam R. Secondary salinity effects on soil microbial biomass. Biol Fertil Soils. 2010;46(5):445–9. https://doi.org/10.1007/s00374-010-0451-9
  39. 39. Ankush. Studies on sewage sludge application on soil properties, nutrient status and yield of pearl millet–wheat cropping system under saline water irrigation [PhD thesis]. Hisar: CCS Haryana Agricultural University; 2019.
  40. 40. Rani S, Satyavan, Kumar A, Beniwal S. Integrated nutrient management as a managerial tool for applying saline water in wheat crop cultivated under sub-tropic and semi-arid conditions of North-Western India. J Plant Nutr. 2020;43(4):604–20. https://doi.org/10.1080/01904167.2019.1701024
  41. 41. Demir Z. Effects of vermicompost and salinity on proctor optimum water content, maximum dry bulk density and consistency of a sandy clay loam soil. Commun Soil Sci Plant Anal. 2024;55(12):1747–67. https://doi.org/10.1080/00103624.2024.2334025
  42. 42. Veeresh H, Tripathy S, Chaudhuri D, Ghosh B, Hart B, Powell M. Changes in physical and chemical properties of three soil types in India as a result of amendment with fly ash and sewage sludge. Environ Geol. 2003;43(5):513–20. https://doi.org/10.1007/s00254-002-0644-3
  43. 43. García-Gil JC, Plaza C, Senesi N, Brunetti G, Polo A. Effects of sewage sludge amendment on humic acids and microbiological properties of a semiarid Mediterranean soil. Biol Fertil Soils. 2004;39(5):320–8. https://doi.org/10.1007/s00374-003-0708-8
  44. 44. Deb S, Mandal B, Bhadoria PB. Influence of sea water ingression on carbon sequestration in soils under coastal agro-ecosystems of eastern India. Agric Res. 2020;9(4):622–30. https://doi.org/10.1007/s40003-020-00467-8
  45. 45. Deshmukh VL, Kaswala RR, Patil RG, Kaswala AR. Effect of different sludge materials on physico-chemical properties of Vertisol. J Maharashtra Agric Univ. 2004;29(1):9–11.
  46. 46. Singh RP, Agrawal M. Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere. 2007;67(11):2229–40. https://doi.org/10.1016/j.chemosphere.2006.11.058
  47. 47. Kiranbek JK. Effect of integrated nutrient management on yield and chemical composition of rice in salt-affected soil [PhD thesis]. Anand: Anand Agricultural University; 2018.
  48. 48. Sharma S, Dhaliwal SS. Effect of sewage sludge and rice straw compost on yield, micronutrient availability and soil quality under rice–wheat system. Commun Soil Sci Plant Anal. 2019;50(16):1943–54. https://doi.org/10.1080/00103624.2019.1648490

Downloads

Download data is not yet available.