Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Clonal propagation for sustainable production in papaya: A review

DOI
https://doi.org/10.14719/pst.12131
Submitted
5 October 2025
Published
16-12-2025

Abstract

Papaya (Carica papaya L.) is a dicotyledonous, polygamous fruit crop bearing staminate, pistillate and hermaphrodite flowers and valued for its ability to produce fruits year-round. Despite its economic significance, conventional seed propagation is constrained by variability in sex expression, yield and fruit quality, largely attributed to the crop’s inherent heterozygosity. These challenges hinder the production of uniform and true-to-type planting material, limiting the efficiency and predictability of commercial cultivation. Clonal propagation has emerged as a promising alternative, enabling the rapid multiplication of genetically uniform, disease-free plants while reducing reliance on natural seed resources. Its use of controlled environments minimizes land requirements, conserves elite germplasm and supports consistent plant quality, making it a more sustainable and scalable approach for papaya production. Asexual techniques such as cuttings, grafting and micropropagation not only address the limitations of seed-based propagation but also facilitate the preservation of desirable traits essential for industry advancement. This review synthesizes current knowledge on these clonal propagation methods, evaluating their advantages and constraints. Additionally, recent advancements, including optimized somatic embryogenesis protocols, bioreactor-based multiplication and improved acclimatization strategies, have further enhanced the efficiency, reliability and commercial viability of clonal papaya production.

References

  1. 1. Chan HT Jr, Tang C-S. The chemistry and biochemistry of papaya. Tropical foods. 2012;1:33-53. https://doi.org/10.1016/B978-0-12-370901-1.50007-6
  2. 2. Kanth N, Singh AK, Syamal M. Effect of media pH on shoot proliferation of papaya (Carica papaya L.). International Journal of Current Microbiological Applied Science. 2017;6(10):1633-7. https://doi.org/10.20546/ijcmas.2017.610.196
  3. 3. Emeruwa A. Antibacterial substance from Carica papaya fruit extract. Journal of Natural Products. 1982;45(2):123-7. https://doi.org/10.1021/np50020a002
  4. 4. Singh SP, Kumar S, Mathan SV, Tomar MS, Singh RK, Verma PK, et al. Therapeutic application of Carica papaya leaf extract in the management of human diseases. DARU Journal of Pharmaceutical Sciences. 2020;28(2):735-44. https://doi.org/10.1007/s40199-020-00348-7
  5. 5. Food and agricultural organization corporate statistical database. 2024.
  6. 6. Storey WB. Genetics of the papaya. 1953. https://doi.org/10.1093/oxfordjournals.jhered.a106358
  7. 7. Hartmann HT, Kester DE. Plant propagation: principles and practices. 1975.
  8. 8. Storey WB. Pistillate papaya flower: a morphological anomaly. Science. 1969;163(3865):401-5. https://doi.org/10.1126/science.163.3865.401
  9. 9. Rimberia FK, Ombwara FK, Mumo NN, Ateka EM. Genetic Improvement of papaya (Carica papaya L.). Advances in plant breeding strategies: Fruits: Volume 3: Springer; 2018. p. 897-928. https://doi.org/10.1007/978-3-319-91944-7_21
  10. 10. Manoharan L, Chinnasamy K. 'Validation of sex expression in papaya using molecular markers'. Research Journal of Agricultural Sciences. 2018;9(6):1219-22.
  11. 11. Thirugnanavel A, Balamohan T, Karunakaran G, Manoranjitham S. Effect of papaya ringspot virus on growth, yield and quality of papaya (Carica papaya) cultivars. Indian Journal of Agricultural Sciences. 2015;85(8):1069-73. https://doi.org/10.56093/ijas.v85i8.50852
  12. 12. Hazarika B, Gogoi S, Das RT, Bordoloi A. Studies on seed germination, growth and vigour of papaya seedlings cv."Sapna" as influenced by growth regulators and propagation media. The Pharma Innovation Journal. 2023;12(11):2387-91.
  13. 13. Lanjhiyana R, Sahu G, Panigrahi H, Katiyar P. Role of pre-sowing seed treatment on germination behavior and seedling vigour of papaya (Carica papaya L.). Journal of Pharmacognosy and Phytochemistry. 2020;9(5):3039-42. https://doi.org/10.22271/phyto.2020.v9.i5ap.12803
  14. 14. Mishra M, Rajan S, Damodaran T. New paradigm shifts in micropropagation of fruit crops through bioreactors-a review. Indian J Hort. 2024;81:1-10. https://doi.org/10.58993/ijh/2024.81.1.1
  15. 15. Navarro L, Moreno B, Quiroga S, Pétiard V, Tanksley S, Casa A. Papaya (Carica papaya L.) micro-propagation and breeding. V International Symposium on Papaya 1250; 2017.
  16. 16. Kaluram, Vasugi C, Thomas P, Dinesh M, Nandeesha P. A comparative evaluation of micro-propagated and seed derived plants of intergeneric papaya hybrids. 2022. https://doi.org/10.5958/0974-0112.2022.00065.2
  17. 17. Bhattacharya J, Khuspe S. In vitro and in vivo germination of papaya (Carica papaya L.) seeds. Scientia Horticulturae. 2001;91(1-2):39-49. https://doi.org/10.1016/S0304-4238(01)00237-0
  18. 18. Furutani SC, Nagao MA. Influence of temperature, KNO3, GA3 and seed drying on emergence of papaya seedlings. Scientia Horticulturae. 1987;32(1-2):67-72. https://doi.org/10.1016/0304-4238(87)90017-3
  19. 19. Vozzo JA. Tropical tree seed manual: US Department of Agriculture, Forest Service; 2002.
  20. 20. Campos JCC, Ribeiro JC, Couto L. Emprego da distribuição diamétrica na determinação da intensidade de corte em matas naturais submetidas ao sistema de seleção. Rev Arvore. 1983;7(2):110.
  21. 21. Sookmark S, Tai E, editors. Vegetative propagation of papaya by budding. III Africa Symposium on Horticultural Crops 49; 1973.
  22. 22. Senthilkumar S, Kumar N, Soorianathasundaram K, Jeyakumar P. Effect of plant bio-regulators in induction of lateral shoots in papaya cv. CO. 2. 2014.
  23. 23. Hancock W. Grafting male papaw trees. 1940.
  24. 24. Allan P. Pawpaw grown from cuttings-are more true to type-bear earlier-lower and longer. Farming in South Africa. 1964;101:1-6.
  25. 25. Allan P. Clonal "Honey Gold" pawpaws. A horticultural and commercial success. 1981.
  26. 26. Singh R, Singh G, Rao O. Vegetative propagation of papaya through budding. Indian Journal of Horticulture. 1986;43(1 and 2):1-8.
  27. 27. Allan P, editor. Propogation of 'Honey Gold' papayas by cuttings. International Symposium on Tropical Fruits 370; 1993.
  28. 28. Allan P. Papaws grown from cuttings. 1964.
  29. 29. Allan P, editor. Vegetative propagation and production of 'Honey Gold' papayas. Symposium on Tropical Fruit in International Trade 269; 1989. https://doi.org/10.17660/ActaHortic.1990.269.13
  30. 30. Allan P. Clonal pawpaws prove successful. 40 year old clone continues to produce well. SA Fruit Journal (South Africa). 2003;2(5).
  31. 31. Allan P, editor. Phenology and production of Carica papaya 'Honey Gold' under cool subtropical conditions. I International Symposium on Papaya 740; 2005.
  32. 32. Reuveni O, Shlesinger D, editors. Rapid vegetative propagation of papaya plants by cuttings. International Symposium on the Culture of Subtropical and Tropical Fruits and Crops 275; 1989. https://doi.org/10.17660/ActaHortic.1990.275.36
  33. 33. Katoh F, Ooishi A. A study on juvenility and nodal aging of papaya by vegetative propagation. Journal of the Japanese Society for Horticultural Science. 2003;72(2):93-8. https://doi.org/10.2503/jjshs.72.93
  34. 34. Fitch M. Carica papaya papaya. Biotechnology of fruit and nut crops: CAB International Wallingford UK; 2005. p. 174-201. https://doi.org/10.1079/9780851996622.0174
  35. 35. Schmildt O, Netto AT, Schmildt ER, Carvalho VS, Otoni WC, Campostrini E. Photosynthetic capacity, growth and water relations in 'Golden' papaya cultivated in vitro with modifications in light quality, sucrose concentration and ventilation. Theoretical and Experimental Plant Physiology. 2015;27(1):7-18. https://doi.org/10.1007/s40626-014-0026-y
  36. 36. Nguyen V-H, Nguyen M-T, Nguyen T-T, Tran D-H. Rooting media and growth regulators affect propagation from stem cuttings of Carica papaya L cv 'Tainung No. 2' and 'Red Lady'. Int J Res Agric Sci. 2022;9:24-35.
  37. 37. Allan P, Carlson C. Progress and problems in rooting clonal Carica papaya cuttings. South African Journal of Plant and Soil. 2007;24(1):22-5. https://doi.org/10.1080/02571862.2007.10634776
  38. 38. Montás W, Moon P, Crane JH, editors. Propagation of Papaya (Carica papaya L) with Large-sized Cuttings. Proceedings of the Florida State Horticultural Society; 2016.
  39. 39. Muhamad Hafiz M, Hartinee A, Ab Kahar S, Zabedah M. Effect of different media use on rooting and growth of Eksotika II papaya cuttings (Carica papaya L.). 2013.
  40. 40. Airi S, Gill S, Singh S. Clonal propagation of papaya (Carica papaya L.). 1986.
  41. 41. Senthilkumar S, Kumar N, Soorianathasundaram K, Kumar PJ. Aspects on asexual propagation in papaya (Carica papaya L.)-a review. Agricultural Reviews. 2014;35(4):307-13. https://doi.org/10.5958/0976-0741.2014.00919.2
  42. 42. Meichander P, Vidhya D, Auxcilia J, Djanaguiraman M, Renukadevi P, Muthuvel I. Papaya grafting: Advance, mechanisms and future prospects. Plant Science Today. 2025. https://doi.org/10.14719/pst.8154
  43. 43. Rasool A, Mansoor S, Bhat K, Hassan G, Baba TR, Alyemeni MN, et al. Mechanisms underlying graft union formation and rootstock scion interaction in horticultural plants. Frontiers in Plant Science. 2020;11:590847. https://doi.org/10.3389/fpls.2020.590847
  44. 44. Nguyen V-H, Yen C-R. Rootstock age and grafting season affect graft success and plant growth of papaya (Carica papaya L.) in greenhouse. Chilean Journal of Agricultural Research. 2018;78(1):59-67. https://doi.org/10.4067/S0718-58392018000100059
  45. 45. Akino A, Auxcilia J, Soorianathasundaram K, Muthulakshmi P. Evaluation of seedlings and intervarietal grafts on biochemical properties and biotic stress tolerance enzymes activities of papaya (Carica papaya L.). IJCS. 2018;6(4):2333-4.
  46. 46. Senthilkumar S, Kumar N, Soorianathasundaram K, Jeyakumar P. A histological investigation on graft formation in papaya (Carica papaya L.). Eco Env & Cons. 2016;22(Suppl):69–72.
  47. 47. Chong S, Prabhakaran R, Lee H, editors. An improved technique of propagating 'Eksotika' papaya. International Workshop on Tropical and Subtropical Fruits 787;2007. https://doi.org/10.17660/ActaHortic.2008.787.30
  48. 48. Hartmann HT, Kester DE. Plant propagation: principles and practices. 1959.
  49. 49. Satisha J, Vincent L. Vegetative propagation of papaya (Carica papaya L.) through grafting. Current Science (00113891). 2023;124(2). https://doi.org/10.18520/cs/v124/i2/239-244
  50. 50. Navarro L, editor. Application of shoot-tip grafting in vitro to woody species. International Symposium on Vegetative Propagation of Woody Species 227;1987. https://doi.org/10.17660/ActaHortic.1988.227.2
  51. 51. Mumo N, Rimberia F, Mamati E, Kihurani A. Micrografting of selected Kenyan papaya (Carica papaya L.) lines. 2017.
  52. 52. Conceição CS, Felix KCS, Mariano RL, Medeiros EV, Souza EB. Combined effect of yeast and silicon on the control of bacterial fruit blotch in melon. Scientia Horticulturae. 2014;174:164-70. https://doi.org/10.1016/j.scienta.2014.05.027
  53. 53. Dogra K, Kour K, Kumar R, Bakshi P, Kumar V. Graft-incompatibility in horticultural crops. International Journal of Current Microbiology and Applied Sciences. 2018;7(2):1805-20. https://doi.org/10.20546/ijcmas.2018.702.218
  54. 54. Hartmann HT, Kester DE. Plant propagation: principles and practices. 1975.
  55. 55. Kadam DD, Chhatre AA, Lavale SA, Shinde NA. Low-cost alternatives for conventional tissue culture media. International Journal of Current Microbiology and Applied Sciences. 2018;7(4):2523-9. https://doi.org/10.20546/ijcmas.2018.704.288
  56. 56. Litz RE, Conover RA, editors. Tissue culture propagation of papaya. Proceedings of the Florida State Horticultural Society; 1977.
  57. 57. Rajeevan M, Pandey R. Lateral bud culture of papaya (Carica papaya L.) for clonal propagation. Plant Cell, Tissue and Organ Culture. 1986;6(2):181-8. https://doi.org/10.1007/BF00180803
  58. 58. Bhattacharya J, Renukdas N, Khuspe S, Rawal S. Multiple shoot regeneration from immature embryo explants of papaya. Biologia Plantarum. 2003;47(3):327-31. https://doi.org/10.1023/B:BIOP.0000023873.55327.fe
  59. 59. Agnihotri S, Singh S, Jain M, Sharma M, Sharma A, Chaturvedi H. In vitro cloning of female and male Carica papaya through tips of shoots and inflorescences. 2004.
  60. 60. Anandan R, Thirugnanakumar S, Sudhakar D, Balasubramanian P. In vitro organogenesis and plantlet regeneration of (Carica papaya L.). Journal of Agricultural Technology. 2011;7(5):1339-48.
  61. 61. Setargie A, Mekbib F, Abraha E. In vitro propagation of papaya (Carica papaya L.). World Journal of Agricultural Sciences. 2015;11(2):84-8.
  62. 62. Caple AD, Cheah KT. Micropropagation of hermaphrodite Carica papaya L.'Rainbow'seedlings via axillary bud pathway. Biotechnology. 2016;12:1-5.
  63. 63. Litz RE, Stephen K, Conover RA. In vitro growth of Carica papaya L. cotyledons. Scientia Horticulturae. 1983;19(3-4):287-93. https://doi.org/10.1016/0304-4238(83)90076-6
  64. 64. Da Silva JAT. In vitro response of papaya (Carica papaya) to plant growth regulators. Nusantara Bioscience. 2016;8(1). https://doi.org/10.13057/nusbiosci/n080114
  65. 65. Bowiya K, Soorianathasundaram K, Kavitha C, Hemaprabha K. Effect of presoaking treatments on in vitro seed germination of papaya to facilitate axenic explant production. Int J Curr Microbiol Appl Sci. 2019;7(4):50-5.
  66. 66. Fitch MM, Manshardt RM. Somatic embryogenesis and plant regeneration from immature zygotic embryos of papaya (Carica papaya L.). Plant cell reports. 1990;9(6):320-4. https://doi.org/10.1007/BF00232860
  67. 67. Pérez LP, Montesinos YP, Olmedo JG, Rodriguez RB, Sánchez RR, Montenegro ON, et al. Effect of phloroglucinol on rooting and in vitro acclimatization of papaya (Carica papaya L. var. Maradol Roja). In Vitro Cellular & Developmental Biology-Plant. 2016;52(2):196-203. https://doi.org/10.1007/s11627-015-9733-6
  68. 68. Rajesh C, Kumar K, Kavitha C, Karthikeyan G, Soorianathasundaram K. Differential influence of growth regulators during somatic embryogenesis of gynodioecious Papaya Varieties "CO. 7" and'Red Lady'. Adv Res. 2020;196:10-8. https://doi.org/10.9734/air/2020/v21i430196
  69. 69. Anandan R, Sudhakar D, Balasubramanian P, Gutiérrez-Mora A. In vitro somatic embryogenesis from suspension cultures of Carica papaya L. Scientia Horticulturae. 2012;136:43-9. https://doi.org/10.1016/j.scienta.2012.01.003
  70. 70. Grattapaglia D, Machado MA. micropropagação. Cultura de tecidos e transformação genética de plantas. 1998;1:183-260.
  71. 71. Kavitha C, Surakhshitha N. In vitro plant regeneration of grape cv.'Red globe' through direct organogenesis. 2023. https://doi.org/10.5958/0974-4517.2023.00026.5
  72. 72. Theivanai M, Kavitha C, Ganga M, Hemaprabha K. Standardization of micropropagation protocol for grape rootstock Dog Ridge. Indian Journal of Horticulture. 2020;77(4):582-8. https://doi.org/10.5958/0974-0112.2020.00084.5
  73. 73. Mishra M, Pathak R. Effect of nodal position and season on in vitro shoot proliferation in aonla (Emblica officinalis Gaertn.). Journal of Applied Horticulture. 2001;3(2):103-4. https://doi.org/10.37855/jah.2001.v03i02.11
  74. 74. Yadav U, Lal M, Jaiswal VS. In vitro micropropagation of the tropical fruit tree Syzygium cuminii L. Plant cell, tissue and organ culture. 1990;21(1):87-92. https://doi.org/10.1007/BF00034498
  75. 75. Jain N, Babbar S. Recurrent production of plants of black plum, Syzygium cuminii (L.) Skeels, a myrtaceous fruit tree, from in vitro cultured seedling explants. Plant Cell Reports. 2000;19(5):519-24.https://doi.org/10.1007/s002990050766
  76. 76. Al-Duraid M, Al-Taey K, Al-Kikhani AH, editors. Effect of phenylalanine and naphthalene acetic acid on growth, yield and antioxidant activity of Fenugreek Trigonella foenum-graecum. IOP Conference Series: Earth and Environmental Science; 2019: IOP Publishing. https://doi.org/10.1088/1755-1315/388/1/012073
  77. 77. Safana HS, Ibrahim MA-HI, Abd A-KM. Effect of NAA and Chitosan in rooting branches resulting from stem nodes plantation of Kumquat (Citrus japonica) in vitro. Journal of Kerbala for Agricultural Sciences. 2022;9(1):7-18. https://doi.org/10.59658/jkas.v9i1.924
  78. 78. Hamza OM, Al-Taey DK. A study on the effect of glutamic acid and benzyl adenine application upon growth and yield parameters and active components of two broccoli hybrids. Int J Agricult Stat Sci. 2020;16(2):1163-7.
  79. 79. Hossain M, Rahman S, Islam R, Joarder O. High efficiency plant regeneration from petiole explants of Carica papaya L. through organogenesis. Plant Cell Reports. 1993;13(2):99-102. https://doi.org/10.1007/BF00235299
  80. 80. Waidyaratne S, Samanmalie L. In vitro propagation of Carica papaya L. Variety 'horana papaya hybrid 01' using shoot tip. World. 2022;10(1):15-9. https://doi.org/10.12691/wjar-10-1-3
  81. 81. Kumari R, Kundu M, Mir H, Kumar P. In vitro regeneration technique of papaya (Carica papaya L.) Cv. Pusa Dwarf through shoot tip culture. National Academy Science Letters. 2023;46(1):1-5. https://doi.org/10.1007/s40009-022-01186-8
  82. 82. Fitch MM, Manshardt RM, Gonsalves D, Slightom JL. Transgenic papaya plants from Agrobacterium-mediated transformation of somatic embryos. Plant cell reports. 1993;12(5):245-9.https://doi.org/10.1007/BF00237128
  83. 83. Gonsalves D. Control of papaya ringspot virus in papaya: a case study. Annual review of phytopathology. 1998;36(1):415 37.https://doi.org/10.1146/annurev.phyto.36.1.415
  84. 84. Renukdas N, Mohan M, Khuspe S, Rawal S. Influence of boron on somatic embryogenesis in papaya. Biologia plantarum. 2003;47(1):129-32. https://doi.org/10.1023/A:1027353520043
  85. 85. Malabadi RB, Kumar SV, Mulgund GS, Nataraja K. Induction of somatic embryogenesis in papaya (Carica papaya). Research in Biotechnology. 2011;2(5):40-55.
  86. 86. Heringer AS, Vale EM, Barroso T, Santa-Catarina C, Silveira V. Polyethylene glycol effects on somatic embryogenesis of papaya hybrid UENF/CALIMAN 01 seeds. Theoretical and Experimental Plant Physiology. 2013;25:116-24. https://doi.org/10.1590/S2197-00252013000200004
  87. 87. Abreu IS, Carvalho CR, Clarindo WR. Massal induction of Carica papaya L.'Golden' somatic embryos and somaclone screening by flow cytometry and cytogenetic analysis. Cytologia. 2014;79(4):475-84. https://doi.org/10.1508/cytologia.79.475
  88. 88. Litz RE, Conover RA. Somatic Embryogenesis in Cell Cultures of Carica stipulata1. HortScience. 1980;15(6):733-4. https://doi.org/10.21273/HORTSCI.15.6.733
  89. 89. Chen M, Chen C, Wang D, Chen F. Somatic embryogenesis and plant regeneration from immature embryos of Carica papaya $times$Carica cauliflora cultured in vitro. Canadian Journal of Botany. 1991;69(9):1913-8. https://doi.org/10.1139/b91-240
  90. 90. Da Costa AdFS, Abreu EFM, Schmildt ER, da Costa AN, Schmildt O. Advances observed in papaya tree propagation. Rev Bras Frutic. 2019;41:1-15. https://doi.org/10.1590/0100-29452019036
  91. 91. Anandan R, Soorianathasundaram K, Kumar N, Thirugnanakumar S, Sudhakar D, Balasubramanian P, editors. Somatic embryogenesis in Carica papaya through zygotic embryo derived callus culture. II International Symposium on Papaya 851; 2008.
  92. 92. Mishra M, Shukla N, Chandra R. Role of polyethylene glycol in maturation and germination of transformed somatic embryos of papaya (Carica papaya L.). Indian Journal of Biotechnology. 2010. https://doi.org/10.17660/ActaHortic.2010.851.33
  93. 93. Farzana A, Palkadapala P, Meddegoda K, Samarajeewa P, Eeswara J. Somatic embryogenesis in papaya (Carica papaya L.) cv. Rathna. Journal of the National Science Foundation of Sri Lanka. 2008;36(1). https://doi.org/10.4038/jnsfsr.v36i1.132
  94. 94. Vilasini P, Latipah Z, Salasiah A. Induction of somatic embryogenesis and plant regeneration from immature embryos of Eksotika papaya (Carica papaya). Journal of Tropical Agriculture and Food Science. 2000;28:121-6.
  95. 95. De Winnaar W. Clonal propagation of papaya in vitro. Plant cell, tissue and organ culture. 1988;12(3):305-10. https://doi.org/10.1007/BF00034373
  96. 96. Chow P, Kohashi C, Vangundy R, Murashige T. Effects of common components on hardness of culture media prepared with gelrite™. In Vitro Cellular & Developmental Biology-Plant. 1995;31(2):84-9. https://doi.org/10.1007/BF02632242
  97. 97. Huang L-C, Kohashi C, Vangundy R, Murashige T. Effects of common components on hardness of culture media prepared with gelrite™. In Vitro Cellular & Developmental Biology-Plant. 1995;31(2):84-9. https://doi.org/10.1007/BF02632242
  98. 98. Drew RA, McComb JA, Considine JA. Rhizogenesis and root growth of Carica papaya L. in vitro in relation to auxin sensitive phases and use of riboflavin. Plant Cell, Tissue and Organ Culture. 1993;33(1):1-7. https://doi.org/10.1007/BF01997591
  99. 99. Sekeli R, Abdullah JO, Muda P, Namasivayam P, Abu Bakar UK, Shin SY. 1-Aminocyclopropane-1-carboxylate oxidase 2 reduction effects on physical and physiological responses of Eksotika papaya. Journal of Crop Improvement. 2013;27(5):487-506. https://doi.org/10.1080/15427528.2013.795205
  100. 100. Joshi A, Tripathi A, Sharma N, Tailor A. Somaclonal variation for the improvement of tree species. Biotechnological approaches for sustaining forest trees and their products: Springer; 2024. p. 77-102. https://doi.org/10.1007/978-981-97-4363-6_4
  101. 101. Encina CL, Granero ML, Regalado JJ. In Vitro Long-Term Cultures of Papaya (Carica papaya L. cv. Solo). Horticulturae. 2023;9(6):671. https://doi.org/10.3390/horticulturae9060671
  102. 102. Krishna H, Alizadeh M, Singh D, Singh U, Chauhan N, Eftekhari M, et al. Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech. 2016;6(1):54. https://doi.org/10.1007/s13205-016-0389-7
  103. 103. Al-Shara B, Rosna M, Kamaludin R. Biotechnological methods and limitations of micropropagation in papaya (Carica papaya L.). Journal Animal and Plant Sciences. 2018;28(5):1208-26.
  104. 104. Yie S-T, Liaw S. Plant regeneration from shoot tips and callus of papaya. In Vitro. 1977;13(9):564-8. https://doi.org/10.1007/BF02627852
  105. 105. Drew R. Rapid clonal propagation of papaya in vitro from mature field-grown trees. HortScience. 1988;23(3):609-11. https://doi.org/10.21273/HORTSCI.23.3.609
  106. 106. Teo C, Chan L. The effects of agar content, nutrient concentration, genotype and light intensity on the in vitro rooting of papaya microcuttings. Journal of Horticultural Science. 1994;69(2):267-73. https://doi.org/10.1080/14620316.1994.11516454
  107. 107. Patel H, Krishnamurthy R. Elicitors in plant tissue culture. Journal of Pharmacognosy and Phytochemistry. 2013;2(2):60-5.
  108. 108. Efendi D, PutraB MR. Optimation of in vitro lateral shoots multiplication of papaya (Carica papaya L.) "Callina" with BAP and NAA. J Trop Crop Sci. 2017;4(3). https://doi.org/10.29244/jtcs.4.3.102-107
  109. 109. Chan LK, Teo C, editors. Micropropagation of Eksotika, a Malaysian papaya cultivar and the field performance of the tissue culture derived clones. International Symposium on Tropical and Subtropical Fruits 575; 2000.
  110. 110. Nguyen V-H, Yen C-R, Hsieh C-H. Effect of nutritional and growth hormonal factors on in vitro regeneration of papaya (Carica papaya L. cv. Red Lady). Journal of the National Science Foundation of Sri Lanka. 2018;46(4). https://doi.org/10.4038/jnsfsr.v46i4.8631
  111. 111. Yu T-A, Yeh S-D, Yang J-S. Comparison of the effects of kanamycin and geneticin on regeneration of papaya from root tissue. Plant Cell, Tissue and Organ Culture. 2003;74(2):169-78. https://doi.org/10.1023/A:1023906309446
  112. 112. Razak RA, Sekeli R, Shaharuddin NA, Abdullah JO. Using mannose as a positive selection of transformed Carica papaya L. var ‘Eksotika’. Jurnal Teknologi (Sciences & Engineering). 2015;77(31). https://doi.org/10.11113/jt.v77.6889
  113. 113. Modi A, Suthar K, Thakkar P, Mankad MC, Kumari S, Narayanan S, et al. Evaluation of sex specific RAPD and SCAR markers linked to papaya (Carica papaya L.). Biocatalysis and Agricultural Biotechnology. 2018;16:271-6. https://doi.org/10.1016/j.bcab.2018.08.004
  114. 114. Fernando JA, Melo M, Soares MK, Appezzato-da-Glória B. Anatomy of somatic embryogenesis in Carica papaya L. Brazilian Archives of Biology and Technology. 2001;44:247-55. https://doi.org/10.1590/S1516-89132001000300005
  115. 115. Roy P, Roy S, Hakim L, Mamun A. Somatic embryogenesis and plant regeneration of papaya (Carica papaya L. cv. Shahi). Nucl Sci App. 2016;25.
  116. 116. Anandan R, Deenathayalan T, Kumar NS, Deepak K. An alternative in vitro plant regeneration system in papaya (Carica papaya L.) through callus derived nodular cultures. Meta Gene. 2018;17:147-52. https://doi.org/10.1016/j.mgene.2018.06.007
  117. 117. Cipriano JL, Cruz ACF, Mancini KC, Schmildt ER, Lopes JC, Otoni WC. Somatic embryogenesis in Carica papaya as affected by auxins and explants and morphoanatomical-related aspects. Anais da Academia Brasileira de Ciências. 2018;90(01):385-400. https://doi.org/10.1590/0001-3765201820160252
  118. 118. Malik N, Sengar RS, Yadav MK, Singh SK, Singh G, Kumar M. Effect of different plant growth regulators on in-vitro callus Induction in Carica papaya (cv. Pusa Nanha). Int J Curr Microbiol Appl Sci. 2019;8(7):1217-25. https://doi.org/10.20546/ijcmas.2019.807.145
  119. 119. Chong-Pérez B, Carrasco B, Silva H, Herrera F, Quiroz K, Garcia-Gonzales R. Regeneration of highland papaya (Vasconcellea pubescens) from anther culture. Applications in Plant Sciences. 2018;6(9):e01182. https://doi.org/10.1002/aps3.1182
  120. 120. Litz R, Conover R. In vitro somatic embryogenesis and plant regeneration from Carica papaya L. ovular callus. Plant Science Letters. 1982;26(2-3):153-8. https://doi.org/10.1016/0304-4211(82)90086-4
  121. 121. Rathi U, Gupta A, Pradhan PJ, Choudhury A, Patil BL, Mazumdar-Leighton S. An improved plant regeneration protocol for a popular Indian Madhubindu variety of papaya (Carica papaya L.) via somatic embryogenesis. Vegetos. 2025;38(1):250-9. https://doi.org/10.1007/s42535-024-00971-8

Downloads

Download data is not yet available.