Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Evaluation of salt tolerance in cotton (Gossypium hirsutum L.) under NaCl treatment based on chlorophyll and SPAD parameters

DOI
https://doi.org/10.14719/pst.12272
Submitted
14 October 2025
Published
06-02-2026

Abstract

Increasing soil salinisation, exacerbated by global warming, poses a major threat to sustainable agriculture, as salinity severely impairs plant growth and development. Salinity is one of the most severe abiotic stresses affecting plant growth and development. In this study, the salt tolerance of 28 cotton (Gossypium hirsutum L.) cultivars was evaluated under controlled phytotron conditions through the measurement of chlorophyll a, b, total chlorophyll (a+b), carotenoids and SPAD index under NaCl treatments (0, 50 and 100 mM). The experiment was conducted in triplicate and measurements were taken 21 days after salt application. The obtained data revealed significant variability among the cultivars. At 100 mM NaCl, a reduction in chlorophyll a exceeding 20 % compared to the control was observed in 12 cultivars, whereas others (e.g., Baraka, Gulbahor-2, C-4727) maintained relatively high levels of total chlorophyll. A strong correlation was found between SPAD readings and laboratory-determined total chlorophyll content (r = 0.82; p < 0.001), confirming the suitability of SPAD as a rapid screening tool for identifying salt-tolerant genotypes. The findings highlight promising donor cultivars (Porloq-1, Afsona, Baraka, Kelajak, Buxoro-14) for breeding programmes and recommend an integrated approach combining chlorophyll content and SPAD measurements for early-stage selection of salt-tolerant cotton genotypes. The results may contribute to breeding for stress resistance in cotton and support the development of strategies for precision agriculture under saline conditions.

References

  1. 1. Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI. Plant salt tolerance mechanisms. Trends Plant Sci. 2014;19(6):371-79. https://doi.org/10.1016/j.tplants.2014.02.001
  2. 2. Peng Z, He S, Gong W, Sun J, Pan Z, Xu F, et al. Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes. BMC Genomics. 2014;15(1):760. https://doi.org/10.1186/1471-2164-15-760
  3. 3. Mehboob-ur-Rahman, Yusuf Z, Tianzhen Z. Cotton precision breeding. Switzerland: Springer Nature; 2021. p. 459.
  4. 4. Sharif I, Aleem S, Farooq J, Rizwan M, Younas A, Sarwar G, et al. Salinity stress in cotton: effects, mechanism of tolerance and its management strategies. Physiol Mol Biol Plants. 2019;25(4):807-20. https://doi.org/10.1007/s12298-019-00676-2
  5. 5. Liu C, Jiang X, Yuan Z. Plant responses and adaptations to salt stress: a review. Horticulturae. 2024;10(11):1221. https://doi.org/10.3390/horticulturae10111221
  6. 6. Zhang L, Ma H, Chen T, Pen J, Yu S, Zhao X. Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity. PLoS One. 2014;9(11):e112807. https://doi.org/10.1371/journal.pone.0112807
  7. 7. Zahra N, Al Hinai MS, Hafeez MB, Rehman A, Wahid A, Siddique KHM, et al. Regulation of photosynthesis under salt stress and associated tolerance mechanisms. Plant Physiol Biochem. 2022;178:55-69. https://doi.org/10.1016/j.plaphy.2022.03.003
  8. 8. Duarte B, Sleimi N, Caçador I. Biophysical and biochemical constraints imposed by salt stress: learning from halophytes. Front Plant Sci. 2014;5:746. https://doi.org/10.3389/fpls.2014.00746
  9. 9. Liu CY, Zhao XQ, Yan JX, Yuan ZH, Gu MM. Effects of salt stress on growth, photosynthesis and mineral nutrients of pomegranate (Punica granatum) cultivars. Agronomy. 2020;10:27. https://doi.org/10.3390/agronomy10010027
  10. 10. Meloni DA, Oliva MA, Martinez CA, Cambraia J. Photosynthesis and activity of antioxidant enzymes in cotton under salt stress. Environ Exp Bot. 2003;49:69-76. https://doi.org/10.1016/S0098-8472(02)00058-8
  11. 11. Taïbi K, Taïbi F, Ait L'Ennajah A, Belkhodja M, Mulet JM. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. S Afr J Bot. 2016;105:306-12. https://doi.org/10.1016/j.sajb.2016.03.011
  12. 12. Kiani-Pouya A, Rasouli F. The potential of leaf chlorophyll content to screen bread-wheat genotypes in saline condition. Photosynthetica. 2014;52:288-300. https://doi.org/10.1007/s11099-014-0033-x
  13. 13. Salakhutdinov IB, Kamburova VS, Khurshut EE, Zuparova DM, Mamatkulova GF, Radzhapov FS, et al. Evaluation of salt tolerance in Uzbek cotton varieties (Gossypium hirsutum) for the study of SOS genes. Niva Povoljya. 2022;4(64).
  14. 14. Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949;24(1):1. https://doi.org/10.1104/pp.24.1.1
  15. 15. R Core Team. R: a language and environment for statistical computing. Vienna: R Core Team; 2016.
  16. 16. Kushakov SO, Usmanov DE, Imamkhodjaeva AS, Salakhutdinov IB, Abdukarimov SS, Radjapov FS, et al. Assessment of salt tolerance in the cotton (Gossypium hirsutum L.) variety “Baraka” at the seedling stage. Plant Sci Today. 2023;10. https://doi.org/10.14719/pst.11918
  17. 17. Filatova LA, Kusakina MG, Yakusheva IN. Effect of salinity on photosynthetic indices of etiolated bean seedlings when transferred to light. Bull Perm Univ Biol. 2008;9(25):11-15.
  18. 18. Ashraf M, Harris PJC. Photosynthesis under stressful environments: an overview. Photosynthetica. 2013;51:163-90. https://doi.org/10.1007/s11099-013-0021-6
  19. 19. Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59:651-81. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  20. 20. Chandramohanan KT, Radhakrishnan VV, Abhilash JE, Mohanan KV. Effect of salinity stress on chlorophyll content of rice cultivars. Agric For Fish. 2014;3(2):67-70. https://doi.org/10.11648/j.aff.20140302.13
  21. 21. Parida AK, Das AB. Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf. 2005;60(3):324-49. https://doi.org/10.1016/j.ecoenv.2004.06.010
  22. 22. Sikder RK, Wang X, Jin D, Zhang H, Gui H, Dong Q, et al. Screening upland cotton (Gossypium hirsutum L.) genotypes for salt tolerance at seedling stage. J Cotton Res. 2020;3:11. https://doi.org/10.1186/s42397-020-00049-1
  23. 23. Abdul Qados AMS. Effect of salt stress on plant growth and metabolism of bean plant Vicia faba L. J Saudi Soc Agric Sci. 2011;10:7-15. https://doi.org/10.1016/j.jssas.2010.06.002
  24. 24. Negrão S, Schmöckel SM, Tester M. Evaluating physiological responses of plants to salinity stress. Ann Bot. 2017;119(1):1-11. https://doi.org/10.1093/aob/mcw191
  25. 25. Telegina TA, Vechtomova YL, Aybush AV, Buglak AA, Kritsky MS. Isomerization of carotenoids in photosynthesis and metabolic adaptation. Biophys Rev. 2023;15(5):887-906. https://doi.org/10.1007/s12551-023-01156-4
  26. 26. Uarrota VG, Stefen DLV, Leolato LS, Gindri DM, Nerling D. Carotenoids and plant stress responses. In: Gupta D, Palma J, Corpas F, editors. Antioxidants and antioxidant enzymes in higher plants. Cham: Springer; 2018.
  27. 27. Shavkiev J, Azimov A, Mamarasulov Z, Asatova X, Abdurasulov F, Nabiev S. Salinity tolerance of cotton genotypes using physiological markers. Sci Innov Int Sci J. 2025;4(11).
  28. 28. Alizade S, Mammadova R, Shirinova A, Amrahov N, Aghazada G, Javadzade A, et al. Effect of indole-3-acetic acid under salt stress in cotton (Gossypium hirsutum L.). Adv Biol Earth Sci. 2025;10(1):40-50. https://doi.org/10.62476/abes.10140
  29. 29. Wei L, Lu L, Shang Y, Ran X, Liu Y, Fang Y. SPAD values and CIE Lab* scales for predicting chlorophyll and carotenoids. Horticulturae. 2024;10(6):548. https://doi.org/10.3390/horticulturae10060548
  30. 30. Guo H, Huang Z, Li M, Hou Z. Growth, ionic homeostasis and physiological responses of cotton under salt and alkali stress. Sci Rep. 2020;10:21844. https://doi.org/10.1038/s41598-020-79045-z
  31. 31. Hasanuzzaman M, Fujita M. Plant responses and tolerance to salt stress. Int J Mol Sci. 2022;23(9):4810. https://doi.org/10.3390/ijms23094810
  32. 32. Abdullah Z, Ahmed R. Kinetin treatment and salt tolerance of potato cultivars. J Agron Crop Sci. 1990;165:94-102. https://doi.org/10.1111/j.1439-037X.1990.tb00839.x
  33. 33. Raxmatullina NSh, Nasriddinova PM, Akinshina NG, Azizov AA, Mirxodjaev UZ. Adaptation of photosynthetic apparatus to salt stress. Nauchnoe Obozrenie Biol Nauki. 2022;(1):56-61.
  34. 34. Rakhmatova NR, Makamov AKh, Imamkhodzhaeva AS, Khusenov NN, Norbekov ZhK, Boykobulov UA, et al. Morphological and physiological traits of cotton under salt stress. Niva Povoljya. 2025;2(74).
  35. 35. Hamada AM, El-Enan AE. Effect of NaCl salinity on broad bean and pea plants. Biol Plant. 1994;36:75-81. https://doi.org/10.1007/BF02921273
  36. 36. Uddling J, Gelang-Alfredsson J, Piikki K, Pleijel H. Relationship between chlorophyll concentration and SPAD readings. Photosynth Res. 2007;91(1):37-46. https://doi.org/10.1007/s11120-006-9077-5
  37. 37. Percival GC, Keary IP, Noviss K. Chlorophyll SPAD meter to quantify nutrient stress in trees. Arboric Urban For. 2008;34(2):89-100. https://doi.org/10.48044/jauf.2008.012
  38. 38. Sudhir P, Murthy SDS. Effects of salt stress on photosynthesis. Photosynthetica. 2004;42(2):481-86. https://doi.org/10.1007/S11099-005-0001-6
  39. 39. Bode S, Quentmeier CC, Liao PN, Hafi N, Barros T, Wilk L, et al. Regulation of photosynthesis by carotenoid-chlorophyll interactions. Proc Natl Acad Sci U S A. 2009;106(30):12311-16. https://doi.org/10.1073/pnas.0903536106
  40. 40. Shakeela BS, Chachar QI, Chachar SD, Solangi AB, Solangi JA. Effect of salinity (NaCl) stress on physiological characteristics of rice (Oryza sativa L.) at early seedling stage. Int J Agric Tech. 2016;12(2):263-79.

Downloads

Download data is not yet available.