Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Effect of seed treatment with salicylic acid, humic acid and zinc on the growth rate of broad bean seedlings (Vicia faba L.)

DOI
https://doi.org/10.14719/pst.12521
Submitted
31 October 2025
Published
29-01-2026
Versions

Abstract

Seed germination and early seedling growth are critical stages that determine successful crop establishment and productivity in grain legumes. However, limited information is available regarding the comparative physiological effects of individual seed treatments with salicylic acid (SA), humic acid (HA) and zinc (Zn) on faba bean seedlings. This study aimed to evaluate the physiological effects of individual seed treatments with SA, HA and Zn on the germination performance and growth of faba bean (Barcino cultivar) seedlings. Seeds were sterilized and soaked in different concentrations of each treatment (SA at 0, 50, 150, 200 mg/L; HA at 0, 100, 200, 300 mg/L; Zn at 0, 200, 300, 400 mg/L). Germination and seedling vigour were assessed using standard indices. The results showed significant superiority of all treatments compared to the control. Salicylic acid at 150 mg/L was the most effective treatment, recording the highest values for the final germination percentage (98.21 %), the lowest average germination time (3.4 days) and the highest germination index (37.21), in addition to its superiority in all vegetative growth traits and vitality indicators. Humic acid followed in performance at 300 mg/L, followed by Zn at 300 mg/L. This study concludes that seed pre-treatment with 150 mg/L SA is a promising approach enhancing germination and early seedling growth in faba bean. The findings highlight the importance of determining the optimal concentration for each biostimulant to avoid potential inhibitory effects at higher doses.

References

  1. 1. Jacob SR, Kumar MA, Varghese E, Sinha S. Hydrophilic polymer film coat as a micro-container of individual seed facilitates safe storage of tomato seeds. Sci Hortic. 2016;204:116-22. https://doi.org/10.1016/j.scienta.2016.03.039
  2. 2. Farooq M, Wahid A, Siddique KHM. Micronutrient application through seed treatments: A review. J Soil Sci Plant Nutr. 2012;12(1):125-42. https://doi.org/10.4067/S0718-95162012000100011
  3. 3. Cakmak I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil. 2008;302:1-17. https://doi.org/10.1007/s11104-007-9466-3
  4. 4. Pathak GC, Gupta B, Pandey N. Improving reproductive efficiency of chickpea by foliar application of zinc. Braz J Plant Physiol. 2012;24:173-80. https://doi.org/10.1590/S1677-04202012000300004
  5. 5. Márquez-Quiroz C, De-la-Cruz-Lázaro E, Osorio-Osorio R, Sánchez-Chávez E. Biofortification of cowpea beans with iron: Iron’s influence on mineral content and yield. J Soil Sci Plant Nutr. 2015;15(4):839-47. https://doi.org/10.4067/S0718-95162015005000058
  6. 6. Kinaci E, Gulmezoglu N. Grain yield and yield components of triticale upon application of different foliar fertilizers. Interciencia. 2007;32(9):624-28.
  7. 7. Farooq M, Ullah A, Rehman A, Nawaz A, Nadeem A, Wakeel A, et al. Application of zinc improves the productivity and biofortification of fine grain aromatic rice grown in dry seeded and puddled transplanted production systems. Field Crops Research. 2018;216:53-62. https://doi.org/10.1016/j.fcr.2017.11.004
  8. 8. Rehman A, Farooq M, Nawaz A, Al Sadi AM, Al-Hashmi KS, Nadeem F, et al. Characterizing bread wheat genotypes of Pakistani origin for grain zinc biofortification potential. J Sci Food Agric. 2018;98(13):4824-36. https://doi.org/10.1002/jsfa.8974
  9. 9. Farooq M, Wahid A, Ahmad N, Asad SA. Comparative efficacy of surface drying and re-drying seed priming in rice: Changes in emergence, seedling growth and associated metabolic events. Paddy Water Environ. 2010;8(1):15-22. https://doi.org/10.1007/s10333-009-0170-1
  10. 10. Farooq M, Basra SMA, Khalid M, Tabassum R, Mahmood T. Nutrient homeostasis, metabolism of reserves and seedling vigor as affected by seed priming in coarse rice. Botany. 2006;84(8):1196-202. https://doi.org/10.1139/b06-088
  11. 11. Farooq M, Basra SMA, Tabassum R, Afzal I. Enhancing the performance of direct seeded fine rice by seed priming. Plant Prod Sci. 2006;9(4):446-56. https://doi.org/10.1626/pps.9.446
  12. 12. Farooq M, Basra SMA, Wahid A. Priming of field-sown rice seed enhances germination, seedling establishment, allometry and yield. Plant Growth Regul. 2006;49:285-94. https://doi.org/10.1007/s10725-006-9138-y
  13. 13. Rehman A, Farooq M, Ahmad R, Basra SMA. Seed priming with zinc improves the germination and early seedling growth of wheat. Seed Sci Technol. 2015;43(2):262-68.
  14. 14. Gao Q, Liu Y, Liu Y, Dai C, Zhang Y, Zhou F, et al. Salicylic acid modulates the osmotic system and photosynthesis rate to enhance the drought tolerance of Toona ciliata. Plants (Basel). 2023;12(24):4187.
  15. 15. Zaid A, Mohammad F, Siddique KHM. Salicylic acid priming regulates stomatal conductance, trichome density and improves cadmium stress tolerance in Mentha arvensis L. Front Plant Sci. 2022;13:895427.
  16. 16. Xie Z, Chen Z. Salicylic acid induces rapid inhibition of mitochondrial electron transport and oxidative phosphorylation in tobacco cells. Plant Physiol. 1999;120(1):217-26. https://doi.org/10.1104/pp.120.1.217
  17. 17. Alam P, Balawi TA, Faizan M. Salicylic acid’s impact on growth, photosynthesis and antioxidant enzyme activity of Triticum aestivum when exposed to salt. Molecules. 2022;28(1):100. https://doi.org/10.3390/molecules28010100
  18. 18. Wada KC, Yamada M, Shiraya T, Takeno K. Salicylic acid and the flowering gene FLOWERING LOCUS T homolog are involved in poor nutrition stress-induced flowering of Pharbitis nil. J Plant Physiol. 2010;167(6):447-52.
  19. 19. Hayat Q, Hayat S, Alyemeni MN, Ahmad A. Salicylic acid mediated changes in growth, photosynthesis, nitrogen metabolism and antioxidant defense system in Cicer arietinum L. Plant Soil Environ. 2012;58(9):417-23. https://doi.org/10.17221/232/2012-PSE
  20. 20. Schenk PM, Kazan K, Rusu AG, Manners JM, Maclean DJ. The SEN1 gene of Arabidopsis is regulated by signals that link plant defense responses and senescence. Plant Physiol Biochem. 2005;43(10-11):997-1005. https://doi.org/10.1016/j.plaphy.2005.09.002
  21. 21. Miao Y, Laun T, Zimmermann P, Zentgraf U. Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol. 2004;55(6):853-67. https://doi.org/10.1007/s11103-004-2142-6
  22. 22. Rady MM, Mohamed GF. Modulation of salt stress effects on the growth, physio-chemical attributes and yields of Phaseolus vulgaris L. plants by the combined application of salicylic acid and Moringa oleifera leaf extract. Sci Hortic. 2015;193:105-13. https://doi.org/10.1016/j.scienta.2015.07.003
  23. 23. Hamaiel A, Abdelhady M, Dawod M. Enhancing fruit yield and quality of red sweet pepper under protected conditions with organic acids and bio-stimulants. Damietta J Agric Sci. 2024;3(2):1-13.
  24. 24. Aravind P, Prasad MNV. Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.: A free floating freshwater macrophyte. Plant Physiol Biochem. 2003;41(4):391-97.
  25. 25. Hajiboland R, Amirazad F. Growth, photosynthesis and antioxidant defense system in Zn-deficient red cabbage plants. Plant Soil Environ. 2010;56(5):209-17.
  26. 26. Tapiero H, Tew KD. Trace elements in human physiology and pathology: Zinc and metallothioneins. Biomed Pharmacother. 2003;57(9):399-411. https://doi.org/10.1016/S0753-3322(03)00047-4
  27. 27. Ullah A, Farooq M, Hussain M, Ahmad R, Wakeel A. Zinc seed priming improves stand establishment, tissue zinc concentration and early seedling growth of chickpea. J Anim Plant Sci. 2019;29(4):1046-53.
  28. 28. Ullah A, Farooq M, Hussain M, Ahmad R, Wakeel A. Zinc seed coating improves emergence and seedling growth in desi and Kabuli chickpea types but shows toxicity at higher concentration. Int J Agric Biol. 2019;21:553-59. https://doi.org/10.17957/IJAB/15.0972
  29. 29. Rehman A, Farooq M. Zinc seed coating improves the growth, grain yield and grain biofortification of bread wheat. Acta Physiol Plant. 2016;38:238. https://doi.org/10.1007/s11738-016-2238-9
  30. 30. Genc Y, McDonald G, Graham R. The interactive effects of zinc and salt on growth of wheat. In: I Cakmak, R Welch, editors. Plant nutrition for food security, human health and environmental protection. Beijing: Tsinghua University Press; 2005. p. 548-49.
  31. 31. L’Hocine L, Martineau-Côté D, Achouri A, Wanasundara JP, Loku Hetti Arachchige GW. Broad bean (faba bean). In: Pulses: processing and product development. Springer; 2020. p. 27-54.
  32. 32. Marwa S, Selim S, Ragab A, Saleh E. Inoculation time as a prime factor affecting successful nodulation of common bean (Phaseolus vulgaris L.). Arab Univ J Agric Sci. 2002;10(2):521-41.
  33. 33. Carvalho LJ, Corrêa M, Pereira E, Nutti M, Carvalho JV, Ribeiro EG, et al. Iron and zinc retention in common beans (Phaseolus vulgaris L.) after home cooking. Food Nutr Res. 2012;56:15618. https://doi.org/10.3402/fnr.v56i0.15618
  34. 34. Matlob A, Mohammed ID, Abdul K. The vegetable production. Part II. 2nd rev ed. 1989. p. 337.
  35. 35. de Lima JD, Dedino DB, Guedes AT, da Rosa FL, Lima GO, Lima NK, et al. Salicylic acid at beans germination against salt stress. Sci Agrar Parana. 2019;18(1):88-92.
  36. 36. Kandil AA, Sharief AE, Ahmed SRH. Germination and seedling growth of some chickpea cultivars (Cicer arietinum L.) under salinity stress. J Basic Appl Sci. 2012;8(2):561-71.
  37. 37. Kaya M, Atak M, Khawar KM, Çiftçi CY, Özcan S. Effect of pre-sowing seed treatment with zinc and foliar spray of humic acids on yield of common bean (Phaseolus vulgaris L.). Int J Agric Biol. 2005;7(6):875-78.
  38. 38. Brasil. Ministério da Agricultura e Reforma Agrária. Regras para análise de sementes. Brasília (DF): SNDADNDDV/CLAV; 1992.
  39. 39. Ellis RH, Roberts EH. The quantification of ageing and survival in orthodox seeds. Seed Sci Technol. 1981;9(2):373-409.
  40. 40. Cao DD, Hu J, Huang XX, Wang XJ, Guan YJ, Wang ZF. Relationships between changes of kernel nutritive components and seed vigor during development stages of F1 seeds of sh2 sweet corn. J Zhejiang Univ Sci B. 2008. https://doi.org/10.1631/jzus.B0820084
  41. 41. Abdul-Baki AA, Anderson JD. Vigor determination in soybean seed by multiple criteria. Crop Sci. 1973;13(6):630-33. https://doi.org/10.2135/cropsci1973.0011183x001300060013x
  42. 42. Lee S, Kim SG, Park CM. Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytol. 2010;188(2):626-37. https://doi.org/10.1111/j.1469-8137.2010.03378.x
  43. 43. Ahmad B, Hussain F, Shuaib M, Shahbaz M, Hadayat N, Shah M, et al. Effect of salicylic acid and amino acid on pea plant (Pisum sativum) late season growth and production. Pol J Environ Stud. 2023;32(3). https://doi.org/10.15244/pjoes/156881
  44. 44. Gharib F, Hegazi A. Salicylic acid ameliorates germination, seedling growth, phytohormone and enzymes activity in bean (Phaseolus vulgaris L.) under cold stress. J Am Sci. 2010;6(10):675-83.
  45. 45. Rodrigues LA, Alves CZ, Rego CHQ, Silva TRBD, Silva JBD. Humic acid on germination and vigor of corn seeds. Rev Caatinga. 2017;30:149-54. https://doi.org/10.1590/1983-21252017v30n116rc
  46. 46. da Mota AR, da Silva RJ, de Souza PB, Oliveira LM, dos Santos ACM. Efeito da substância húmica na germinação de sementes de Myracrodruon urundeuva Fr. All. Revista Verde de Agroecologia e Desenvolvimento Sustentável. 2015;10(3):44.
  47. 47. Imran M, Mahmood A, Neumann G, Boelt B. Zinc seed priming improves spinach germination at low temperature. Agriculture (Basel). 2021;11(3):271. https://doi.org/10.3390/agriculture11030271
  48. 48. Suo W, Li L, Zheng Y, Pan S, Niu Y, Guan Y. Effect of seed priming with zinc, iron and selenium on the low temperature tolerance of Nicotiana tabacum L. during seed germination. Biochem Biophys Res Commun. 2024;735:150806. https://doi.org/10.1016/j.bbrc.2024.150806
  49. 49. Afzal I, Rauf S, Basra SMA, Murtaza G. Halopriming improves vigor, metabolism of reserves and ionic contents in wheat seedlings under salt stress. Plant Soil Environ. 2008;54(9):382-88. https://doi.org/10.17221/408-PSE
  50. 50. Lulakis MD, Petsas S. Effect of humic substances from vine-canes mature compost on tomato seedling growth. Bioresour Technol. 1995;54(2):179-82. https://doi.org/10.1016/0960-8524(95)00129-8
  51. 51. Zandonadi DB, Canellas LP, Façanha AR. Indol acetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps activation. Planta. 2007;225(6):1583-95. https://doi.org/10.1007/s00425-006-0454-2
  52. 52. Aragão CA, Dantas BF, Alves E, Cataneo AC, Cavariani C, Nakagawa J. Atividade amilolítica e qualidade fisiológica de sementes armazenadas de milho super doce tratadas com ácido giberélico. Rev Bras Sementes. 2003;25:43-48.
  53. 53. Cakmak I. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 2000;146(2):185-205. https://doi.org/10.1046/j.1469-8137.2000.00630.x
  54. 54. Andreini C, Banci L, Bertini I, Rosato A. Counting the zinc-proteins encoded in the human genome. J Proteome Res. 2006;5(1):196-201. https://doi.org/10.1021/pr050361j
  55. 55. Harris D, Rashid A, Miraj G, Arif M, Yunas M. ‘On-farm’ seed priming with zinc in chickpea and wheat in Pakistan. Plant Soil. 2008;306:3-10. https://doi.org/10.1007/s11104-007-9506-z
  56. 56. Muhammad I, Kolla M, Volker R, Günter N. Impact of nutrient seed priming on germination, seedling development, nutritional status and grain yield of maize. J Plant Nutr. 2015;38(12):1803-21. https://doi.org/10.1080/01904167.2014.990094
  57. 57. Prom-u-thai C, Rerkasem B, Yazici A, Cakmak I. Zinc priming promotes seed germination and seedling vigor of rice. J Plant Nutr Soil Sci. 2012;175(3):482-88. https://doi.org/10.1002/jpln.201100332
  58. 58. Ozturk L, Yazici MA, Yucel C, Torun A, Cekic C, Bagci A, et al. Concentration and localization of zinc during seed development and germination in wheat. Physiol Plant. 2006;128(1):144-52. https://doi.org/10.1111/j.1399-3054.2006.00737.x
  59. 59. Sarwar M. Effects of zinc fertilizer application on the incidence of rice stem borers (Scirpophaga species) (Lepidoptera: Pyralidae) in rice (Oryza sativa L.) crop. J Cereals Oilseeds. 2011;2(5):61-65.

Downloads

Download data is not yet available.