Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 13 No. 1 (2026)

Synergistic organic-bio-mineral fertilization as a breakthrough strategy to maximize maize productivity in gypsiferous soils

DOI
https://doi.org/10.14719/pst.12735
Submitted
14 November 2025
Published
29-01-2026 — Updated on 05-02-2026
Versions

Abstract

Gypsiferous soils are characterized by low nutrient availability and structural limitations that often restrict crop productivity. Therefore, developing integrated nutrient-management strategies is essential to enhance plant performance under such challenging conditions. This study evaluated the efficiency of integrated fertilization with compost, biofertilizers and diammonium phosphate (DAP) in improving the growth and yield of maize (Zea mays L.) grown in gypsiferous soils under sprinkler irrigation. The field experiment was conducted during the 2024 growing season, using a randomized complete block design (RCBD) with 10 treatments (T1–T10) and 3 replications. Results showed that the integrated treatment combining compost, biofertilizers and DAP (T4) produced the tallest plants (163.4 cm), the largest flag leaf area (493.8 cm²) and the earliest flowering (55 days to 50 % male anthesis) compared with the control (128.9 cm, 404.3 cm² and 59.3 days, respectively). Moreover, this treatment recorded the highest yield components: 17.33 rows per cob, 195.5 g grain yield per plant and a total yield of 10.43 t ha-1, whereas the control recorded 14.33 rows per cob, 115.6 g per plant and 6.16 t ha-1. These findings confirm that integrating compost and biofertilizers with DAP represents a sustainable and efficient strategy to improve maize productivity in saline-gypsiferous soils under sprinkler irrigation.

References

  1. 1. Al-Temimi AHM, Al-Hilfy IHH. Role of salinity in limiting maize productivity and potential management strategies. Iraq J Agric Sci. 2022;53(6):1437-46. https://doi.org/10.36103/ijas.v53i6.1660
  2. 2. Olayinka BU, Abdulkareem KA, Abdulbaki AS, Alsamadany H, Alzahrani Y, Isiaka K, et al. Enhancing germination and seedling growth in salt stressed Zea mays lines through chemical priming. Basrah J Agric Sci. 2023;36(2):185-98. https://doi.org/10.37077/25200860.2023.36.2.14
  3. 3. Ji H, Yang G, Zhang X, Zhong Q, Qi Y, Wu K, et al. Regulation of salt tolerance in the roots of Zea mays by L-histidine through transcriptome analysis. Front Plant Sci. 2022;13:1049954. https://doi.org/10.3389/fpls.2022.1049954
  4. 4. Shabaan M, Asghar HN, Zahir ZA, Zhang X, Sardar MF, Li H. Salt-tolerant PGPR confer salt tolerance to Zea mays through enhanced soil biological health, enzymatic activities, nutrient uptake and antioxidant defense. Front Microbiol. 2022;13:901865. https://doi.org/10.3389/fmicb.2022.901865
  5. 5. Liu M, Cao J, Wang C, Wang B, Xue R. Vermicompost enhances the salt tolerance of Zea mays by reshaping the rhizosphere microenvironment. Appl Soil Ecol. 2024;203:105633. https://doi.org/10.1016/j.apsoil.2024.105633
  6. 6. Suvendran S, Acevedo MF, Smithers B, Walker SJ, Xu P. Soil fertility and plant growth enhancement through compost treatments under varied irrigation conditions. Agriculture. 2025;15(7):734. https://doi.org/10.3390/agriculture15070734
  7. 7. Kaiser DE, Fabrizzi K, Fernández FG, Nafziger ED, Kandel H, Randall G, et al. Phosphorus management strategies for corn and soybean in the Upper US Midwest. Agron J. 2025;117(2):e70054. https://doi.org/10.1002/agj2.70054
  8. 8. Chen X, Ren H, Zhang J, Zhao B, Ren Y, Wan P, et al. Deep phosphorus fertilizer placement increases Zea mays productivity by improving root-shoot coordination and photosynthetic performance. Soil Tillage Res. 2024;235:105915. https://doi.org/10.1016/j.still.2023.105915
  9. 9. Long H, Wasaki J. Effects of phosphate-solubilizing bacteria on soil phosphorus fractions and supply to Zea mays seedlings grown in lateritic red earths and cinnamon soils. Microbes Environ. 2023;38:ME22075. https://doi.org/10.1264/jsme2.ME22075
  10. 10. Luo D, Shi J, Li M, Chen J, Wang T, Zhang Q, et al. Consortium of phosphorus-solubilizing bacteria promotes Zea mays growth and changes the microbial community composition of rhizosphere soil. Agronomy. 2024;14(7):1535. https://doi.org/10.3390/agronomy14071535
  11. 11. Yahyaoui H, El Allaoui N, Aziz A, Hafidi M, Habbadi K. Minimizing the adverse impacts of soil salinity on Zea mays and Solanum lycopersicum growth and productivity through the application of plant growth-promoting rhizobacteria. Crops. 2024;4(4):463-79. https://doi.org/10.3390/crops4040033
  12. 12. Xu D, Yu X, Chen J, Li X, Chen J, Li JH. Effects of compost as a soil amendment on bacterial community diversity in saline–alkali soil. Front Microbiol. 2023;14:1253415. https://doi.org/10.3389/fmicb.2023.1253415
  13. 13. Liu J, Zhao J, Li H, Wang X, Zhang Y, Sun Q, et al. Plant growth-promoting rhizobacteria Halomonas alkaliantarcticae M23 promotes the salt tolerance of Zea mays by increasing the K+/Na+ ratio, antioxidant levels and ABA levels and changing the rhizosphere bacterial community. BMC Plant Biol. 2025;25:727. https://doi.org/10.1186/s12870-025-06765-7
  14. 14. Amer MM, Aboelsoud HM, Sakher EM, Hashem AA. Effect of gypsum, compost and foliar application of some nanoparticles in improving some chemical and physical properties of soil and the yield and water productivity of Vicia faba in salt-affected soils. Agronomy. 2023;13(4):1052. https://doi.org/10.3390/agronomy13041052
  15. 15. Al-Hilfy IHH, Al-Temimi AHM. Response of some synthetic Zea mays cultivars to mineral, organic and bio fertilizer. Iraqi J Agric Sci. 2017;48(6A):1447-55.
  16. 16. Shabana MMA, Elhawat N, Abd El-Aziz MA, Abd Elghany SH, Badawy AFM, Alshaal T. Optimizing soil health and Zea mays yield under salinity stress with compost and sulfur nanoparticles. Plants. 2025;14(11):1661. https://doi.org/10.3390/plants14111661
  17. 17. Alkobaisy JS, Abdel Ghani ET, Mutlag Naeem A, Lafi AS. Effect of vermicompost and vermicompost tea on the growth and yield of broccoli and some soil properties. IOP Conf Ser: Earth Environ Sci. 2021;761:012008. https://doi.org/10.1088/1755-1315/761/1/012008
  18. 18. Alkobaisy JS, Mutlag Naeem A. Effect of the use of vermicompost and rhizobial inoculation on some soil characteristics, growth and yield of Vigna radiata L. Iraqi J Agric Sci. 2021;52(1):163-9. https://doi.org/10.36103/ijas.v52i1.1248
  19. 19. Li J, Chen J, Jin J, Wang S, Du B. Effects of irrigation water salinity on Zea mays L. emergence, growth, yield, quality and soil salt. Water. 2019;11(10):2095. https://doi.org/10.3390/w11102095
  20. 20. Nkebiwe PM, Lekfeldt JDS, Symanczik S, Thonar C, Mäder P, Bar-Tal A, et al. Effectiveness of bio-effectors on maize, wheat and tomato performance and phosphorus acquisition from greenhouse to field scales in Europe and Israel: a meta-analysis. Front Plant Sci. 2024;15:1333249. https://doi.org/10.3389/fpls.2024.1333249
  21. 21. Reddy KS, Shivay YS, Kumar D, Parida BK, Bora R, Borate RB, et al. Nano DAP augments productivity, phosphorus use efficiency and profitability of spring wheat. Sci Rep. 2025;15(1):24771. https://doi.org/10.1038/s41598-025-92364-3
  22. 22. Wang Z, He P, Li X, Liu T, Shah S, Ren H, et al. Enhancing yield of modern Zea mays hybrids through the optimization of population photosynthetic capacity and light-nitrogen efficiency under high density. J Integr Agric. 2024. https://doi.org/10.1016/j.jia.2024.09.007
  23. 23. VSNi. Statistical analysis software – Genstat [Internet]. Hemel Hempstead (UK): VSNi; c2026.
  24. 24. Gomez KA, Gomez AA. Statistical procedures for agricultural research. 2nd ed. New York: Wiley; 1984.
  25. 25. Al-Taee EAO, Alamery AAH. Response of Zea mays grown in calcareous soils to levels of agricultural sulfur, thiobacillus bacteria and nano-zinc. J Kerbala Agric Sci. 2024;11(1):65-86. https://doi.org/10.59658/jkas.v11i1.1437
  26. 26. Oyebamiji N, Babalola OA, Stephen OD. Combined effects of organic and inorganic fertilizers on Zea mays for sustainable food supply in semi-arid Nigeria. J Trop Res Sustain Sci. 2021;8(1):40-6. https://doi.org/10.47253/jtrss.v8i1.163
  27. 27. Niu J, Saeed Q, Wang W, Zhang R, Liu L, Lv F, et al. Manure replacing synthetic fertilizer improves crop yield sustainability and reduces carbon footprint under winter wheat–summer Zea mays cropping system. J Environ Manag. 2024;358:120936. https://doi.org/10.1016/j.jenvman.2024.120936
  28. 28. Lan T, Du L, Wang X, Zhan X, Liu Q, Wei G, et al. Synergistic effects of planting density and nitrogen fertilization on chlorophyll degradation and leaf senescence after silking in maize. Crop J. 2024;12(2):605-613. https://doi.org/10.1016/j.cj.2024.02.006
  29. 29. Biswas DR, Narayanasamy G. Rock phosphate enriched compost: an approach to improve low-grade Indian rock phosphate. Bioresour Technol. 2006;97(18):2243-51. https://doi.org/10.1016/j.biortech.2006.02.004
  30. 30. Ekholm P, Ollikainen M, Punttila E, Ala-Harja V, Riihimäki J, Kiirikki M, Taskinen A, Begum K. Gypsum amendment of agricultural fields to decrease phosphorus losses–Evidence on a catchment scale. Journal of Environmental Management. 2024;357:120706. https://doi.org/10.1016/j.jenvman.2024.120706
  31. 31. Wang Y, Gao M, Chen H, Chen Y, Wang L, Wang R. Organic amendments promote saline–alkali soil desalinization and enhance Zea mays growth. Front Plant Sci. 2023;14:1177209. https://doi.org/10.3389/fpls.2023.1177209
  32. 32. Abrol V, Sharma P, Chary GR, Srinivasarao C, Maruthi Sankar GR, Singh B, et al. Integrated organic and mineral fertilizer strategies for achieving sustainable Zea mays yield and soil quality in dry sub-humid inceptisols. Sci Rep. 2024;14:27227. https://doi.org/10.1038/s41598-024-74727-4
  33. 33. Yang X, Zhang K, Chang T, Shaghaleh H, Qi Z, Zhang J, et al. Interactive effects of microbial fertilizer and soil salinity on the hydraulic properties of salt-affected soil. Plants. 2024;13(4):473. https://doi.org/10.3390/plants13040473
  34. 34. Zafar S, Bilal M, Ali MF, Mahmood A, Kijsomporn J, Wong LS, et al. Nano-biofertilizer: an eco-friendly and sustainable approach for the improvement of crops under abiotic stresses. Environ Sustain Indic. 2024;24:100470. https://doi.org/10.1016/j.indic.2024.100470

Downloads

Download data is not yet available.