Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

GC-MS profiling and antimicrobial activity of Moringa oleifera leaf and Citrus sinensis peel extracts and their individual and combinational effects

DOI
https://doi.org/10.14719/pst.12952
Submitted
26 November 2025
Published
29-01-2026
Versions

Abstract

The plant-based antimicrobials have emerged as an alternative source of medicine to synthetic antibiotics due to their cost-effectiveness, cause lesser side effects and have a broad range of activity. The present study deals with the assessment of antibacterial efficiency of ethanolic leaf extracts of Moringa oleifera Lam., as well as ethanolic peel extracts of Citrus sinensis L., against Vibrio harveyi (Gram-negative bacteria) and Bacillus subtilis (Gram-positive bacteria). The M. oleifera and the C. sinensis are widely available, inexpensive and eco-friendly botanical materials with wide range of phytochemical content. The crude extracts were obtained through Soxhlet extraction process with 70 % ethanol. The preliminary qualitative phytochemical analysis showed the presence of alkaloids, tannins, saponins, phenols, flavonoids and terpenoids. Antibacterial activity was assessed by agar well diffusion, broth microdilution (MIC/MBC) and checkerboard synergy testing methods. Findings indicated that the two extracts reduced the growth of bacteria in a dose-dependent manner. Moringa oleifera and Citrus sinensis extracts exhibited a potent antimicrobial activity against B. subtilis (MIC-3.125 ± 0.11 and 12.50 ± 0.00 mg/mL respectively) and V. harvevi (6.25 ± 0.17 and 3.125 ± 0.05 mg/mL respectively). Against B. subtilis, a synergistic effect was defined (fractional inhibitory concentration index (FICI) = 0.31), whereas against V. harveyi, an indifferent effect was observed (FICI = 1.03). Through gas chromatography-mass spectroscopy (GC-MS) analysis we were able to identify some antibacterial compounds in M. oleifera extract such as n-hexadecanoic acid, phytol and α-linolenic acid. Similarly, limonene, 5-hydroxymethylfurfural and phenolic derivatives in C. sinensis. The results support the feasibility of widely used plant resources such as M. oleifera and C. sinensis and their natural antibacterial capacity at an affordable cost and potential anti-microbial usage in food safety and disinfectant spray formulations.

References

  1. 1. Olivia NU, Goodness UC, Obinna OM. Phytochemical profiling and GC-MS analysis of aqueous methanol fraction of Hibiscus asper leaves. Future J Pharm Sci. 2021;7(1):59. https://doi.org/10.1186/s43094-021-00208-4
  2. 2. Enerijiofi KE, Akapo FH, Erhabor JO. GC-MS analysis and antibacterial activities of Moringa oleifera leaf extracts on selected clinical bacterial isolates. Bull Natl Res Cent. 2021;45(1):179. https://doi.org/10.1186/s42269-021-00640-9
  3. 3. Ahmed M, Marrez DA, Abdelmoeen NM, Mahmoud EA, Abdel-Shakur Ali M, Decsi K, et al. Proximate analysis of Moringa oleifera leaves and the antimicrobial activities of successive leaf ethanolic and aqueous extracts. Int J Mol Sci. 2023;24(4):3529. https://doi.org/10.3390/ijms24043529
  4. 4. Gupta S, Nath A, Gupta MK, Sundaram S. Phytochemical analysis and antibacterial activity of different citrus fruit peels. Int J Pharm Sci Res. 2021;12(11).
  5. 5. Anwar T, Qureshi H, Fatima A, Sattar K, Albasher G, Kamal A, et al. Citrus sinensis peel oil extraction and evaluation as an antibacterial and antifungal agent. Microorganisms. 2023;11(7):1662. https://doi.org/10.3390/microorganisms11071662
  6. 6. AlSheikh HMA, Sultan I, Kumar V, Rather IA, Al-Sheikh H, Tasleem Jan A, et al. Plant-based phytochemicals as possible alternative to antibiotics in combating bacterial drug resistance. Antibiotics. 2020;9(8):480. https://doi.org/10.3390/antibiotics9080480
  7. 7. Zhang XH, He X, Austin B. Vibrio harveyi: a serious pathogen of fish and invertebrates in mariculture. Mar Life Sci Technol. 2020;2(3):231-45. https://doi.org/10.1007/s42995-020-00037-z
  8. 8. Atef NM, Shanab SM, Negm SI, Abbas YA. Evaluation of antimicrobial activity of some plant extracts against antibiotic susceptible and resistant bacterial strains causing wound infection. Bull Natl Res Cent. 2019;43(1):144. https://doi.org/10.1186/s42269-019-0184-9
  9. 9. Alam M, Bano N, Ahmad T, Sharangi AB, Upadhyay TK, Alraey Y, et al. Synergistic role of plant extracts and essential oils against multidrug resistance. Antibiotics. 2022;11(7):855. https://doi.org/10.3390/antibiotics11070855
  10. 10. Kamble PA, Phadke M. Use of checkerboard assay to determine the synergy between essential oils extracted from leaves of Aegle marmelos (L.) Correa and nystatin against Candida albicans. AYU. 2023;44(1):38-43. https://doi.org/10.4103/ayu.ayu_397_21
  11. 11. Mahire SP, Patel SN. Extraction of phytochemicals and antimicrobial activity of Helicteres isora L. Clin Phytoscience. 2020;6(1):40. https://doi.org/10.1186/s40816-020-00156-1
  12. 12. Silva DM, Costa PAD, Ribon AOB, Purgato GA, Gaspar DM, Diaz MAN. Plant extracts display synergism with different classes of antibiotics. An Acad Bras Ciênc. 2019;91(2):e20180117. https://doi.org/10.1590/0001-3765201920180117
  13. 13. Usman H, Abdulrahman F, Usman A. Qualitative phytochemical screening and in vitro antimicrobial effects of methanol stem bark extract of Ficus thonningii. Afr J Tradit Complement Altern Med. 2009;6(3):289-95. https://doi.org/10.4314/ajtcam.v6i3.57178
  14. 14. Mazzantini D, Massimino M, Calvigioni M, Rossi V, Celandroni F, Lupetti A, et al. Anti-staphylococcal activity of a polyphenol-rich citrus extract: synergy with β-lactams and low proficiency to induce resistance. Front Microbiol. 2024;15:1415400. https://doi.org/10.3389/fmicb.2024.1415400
  15. 15. Abdulmalik U, Halliru Z, Umar A, Musa M, Adam AS. Phytochemical screening, GC-MS analysis and antibacterial activity of Moringa oleifera ethanolic and aqueous leaf extracts against some clinical isolates. UMYU J Microbiol Res. 2024;9(1):34-45. https://doi.org/10.47430/ujmr.2491.004
  16. 16. Shamsudin NF, Ahmed QU, Mahmood S, Ali Shah SA, Khatib A, Mukhtar S, et al. Antibacterial effects of flavonoids and their structure-activity relationship study: a comparative interpretation. Molecules. 2022;27(4):1149. https://doi.org/10.3390/molecules27041149
  17. 17. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal. 2016;6(2):71-79. https://doi.org/10.1016/j.jpha.2015.11.005
  18. 18. Koohsari H, Ghaemi EA, Sadegh Sheshpoli M, Jahedi M, Zahiri M. Investigation of antibacterial activity of selected native plants from North of Iran. J Med Life. 2015;8(Spec Iss 2):38-42.
  19. 19. Doughari JH, Bazza MJ. Phytochemistry, GC-MS analysis, antioxidant and antibacterial potentials of limonene isolated from pericarp of Citrus sinensis. Int J Microbiol Biotechnol. 2020;5(1):22-27. https://doi.org/10.11648/j.ijmb.20200501.14
  20. 20. Odds FC. Synergy, antagonism and what the chequerboard puts between them. J Antimicrob Chemother. 2003;52(1):1. https://doi.org/10.1093/jac/dkg301
  21. 21. Abreu AC, McBain AJ, Simões M. Plants as sources of new antimicrobials and resistance-modifying agents. Nat Prod Rep. 2012;29(9):1007-21. https://doi.org/10.1039/c2np20035j
  22. 22. Bassolé IHN, Juliani HR. Essential oils in combination and their antimicrobial properties. Molecules. 2012;17(4):3989-4006. https://doi.org/10.3390/molecules17043989
  23. 23. Burt S. Essential oils: their antibacterial properties and potential applications in foods-a review. Int J Food Microbiol. 2004;94(3):223-53. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
  24. 24. Amudha P, Vidya R, Rani V, Jayalakshmi M, Kalpana CS. Molecular docking analysis of 9-octadecene, 9,12,15-octadecatrienoic acid methyl ester, phytol, 9,12-octadecadienoic acid and 9-octadecenoic acid with caspase-3. Texila Int J Public Health. 2024;12(4). https://doi.org/10.21522/TIJPH.2013.12.04.Art097
  25. 25. Islam MT, Ali ES, Uddin SJ, Shaw S, Islam MA, Ahmed MI, et al. Phytol: a review of biomedical activities. Food Chem Toxicol. 2018;121:82-94. https://doi.org/10.1016/j.fct.2018.08.032
  26. 26. Knap K, Kwiecień K, Ochońska D, Reczyńska-Kolman K, Pamuła E, Brzychczy-Włoch M. Synergistic effect of antibiotics, α-linolenic acid and solvent type against Staphylococcus aureus biofilm formation. Pharmacol Rep. 2024;76(6):1456-69. https://doi.org/10.1007/s43440-024-00669-3
  27. 27. Alawode TT, Lajide L, Olaleye M, Owolabi B. Stigmasterol and β-sitosterol: antimicrobial compounds in the leaves of Icacina trichantha identified by GC-MS. Beni-Suef Univ J Basic Appl Sci. 2021;10(1):80. https://doi.org/10.1186/s43088-021-00170-3
  28. 28. Casillas-Vargas G, Ocasio-Malavé C, Medina S, Morales-Guzmán C, Del Valle RG, Carballeira NM, et al. Antibacterial fatty acids: an update of possible mechanisms of action and implications in next-generation antibacterial agent development. Prog Lipid Res. 2021;82:101093. https://doi.org/10.1016/j.plipres.2021.101093
  29. 29. Atta S, Waseem D, Fatima H, Naz I, Rasheed F, Kanwal N. Antibacterial potential and synergistic interaction between natural polyphenolic extracts and synthetic antibiotic on clinical isolates. Saudi J Biol Sci. 2023;30(3):103576. https://doi.org/10.1016/j.sjbs.2023.103576
  30. 30. Rubab M, Chelliah R, Saravanakumar K, Barathikannan K, Wei S, Kim JR, et al. Bioactive potential of 2-methoxy-4-vinylphenol and benzofuran from Brassica oleracea L. var. capitata f. rubra on oxidative and microbiological stability of beef meat. Foods. 2020;9(5):568. https://doi.org/10.3390/foods9050568
  31. 31. Kuwahara H, Kanazawa A, Wakamatu D, Morimura S, Kida K, Akaike T, et al. Antioxidative and antimutagenic activities of 4-vinyl-2,6-dimethoxyphenol (canolol) isolated from canola oil. J Agric Food Chem. 2004;52(14):4380-7. https://doi.org/10.1021/jf040045+
  32. 32. Al-Rubaye AF, Kaizal AF, Hameed IH. Phytochemical screening of methanolic leaves extract of Malva sylvestris. Int J Pharmacogn Phytochem Res. 2017;9(4).
  33. 33. Natarajan P, Singh S, Balamurugan K. GC-MS analysis of bioactive compounds present in Oeophylla smaragdina. Res J Pharm Technol. 2019;12(6):2736. https://doi.org/10.5958/0974-360X.2019.00458.X
  34. 34. Ibnouf EO, Aldawsari MF, Waggiallah H. Isolation and extraction of some compounds that act as antimicrobials from actinomycetes. Saudi J Biol Sci. 2022;29(8):103352. https://doi.org/10.1016/j.sjbs.2022.103352
  35. 35. Ahmad S, Alam O, Naim MJ, Shaquiquzzaman M, Alam MM, Iqbal M. Pyrrole: an insight into recent pharmacological advances with structure activity relationship. Eur J Med Chem. 2018;157:527-61. https://doi.org/10.1016/j.ejmech.2018.08.002
  36. 36. Jumina J, Mutmainah M, Purwono B, Kurniawan YS, Syah YM. Antibacterial and antifungal activity of three monosaccharide monomyristate derivatives. Molecules. 2019;24(20):3692. https://doi.org/10.3390/molecules24203692
  37. 37. Kim HS, Wang L, Fernando IPS, Je JG, Ko SC, Kang MC, et al. Antioxidant efficacy of (-)-loliolide isolated from Sargassum horneri against AAPH-induced oxidative damage in Vero cells and zebrafish models in vivo. J Appl Phycol. 2020;32(5):3341-8. https://doi.org/10.1007/s10811-020-02154-9
  38. 38. Bhardwaj M, Sali VK, Mani S, Vasanthi HR. Neophytadiene from Turbinaria ornata suppresses LPS-induced inflammatory response in RAW 264.7 macrophages and Sprague Dawley rats. Inflammation. 2020;43(3):937-50. https://doi.org/10.1007/s10753-020-01179-z
  39. 39. Purushothaman R, Vishnuram G, Ramanathan T. Isolation and identification of n-hexadecanoic acid from Excoecaria agallocha L. and its antibacterial and antioxidant activity. SSRN Electron J. 2024. https://doi.org/10.2139/ssrn.4886224
  40. 40. Soosairaj S, Dons T. Bioactive compounds analysis and characterization in ethanolic plant extracts of Justicia tranquebariensis L. 2016.
  41. 41. Manaswini S, Akshata R, Bhoomika V, Nandini P, Ganapathy K, Deeshma KP. Antimicrobial and cytotoxic potential of endophytic Aspergillus versicolor isolate from Plectranthus amboinicus. Curr Microbiol. 2025;82(2):84. https://doi.org/10.1007/s00284-024-04050-8
  42. 42. El-Gazzar N, Said L, Al-Otibi FO, AbdelGawwad MR, Rabie G. Antimicrobial and cytotoxic activities of natural (Z)-13-docosenamide derived from Penicillium chrysogenum. Front Cell Infect Microbiol. 2025;15:1529104. https://doi.org/10.3389/fcimb.2025.1529104
  43. 43. Chai WM, Liu X, Hu YH, Feng HL, Jia YL, Guo YJ, et al. Antityrosinase and antimicrobial activities of furfuryl alcohol, furfural and furoic acid. Int J Biol Macromol. 2013;57:151-5. https://doi.org/10.1016/j.ijbiomac.2013.02.019
  44. 44. Petre VA, Cristea NI, Cojocaru VC, Pascu LF, Chiriac FL. Analysis of volatile flavor compounds in four commercial beverages using static headspace GC-MS: a qualitative approach. Appl Sci. 2024;14(5):1910. https://doi.org/10.3390/app14051910
  45. 45. Tabassum N, Khan F, Jeong GJ, Oh DK, Kim YM. Enhanced bioavailability and improved antimicrobial, antibiofilm and antivirulence activities of fish gelatin-based nanoformulations prepared by coating of maltol-gold nanoparticles. Chemosphere. 2025;379:144439. https://doi.org/10.1016/j.chemosphere.2025.144439
  46. 46. Yu X, Zhao M, Liu F, Zeng S, Hu J. Identification of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one as a strong antioxidant in glucose-histidine Maillard reaction products. Food Res Int. 2013;51(1):397-403. https://doi.org/10.1016/j.foodres.2012.12.044
  47. 47. Lomascolo A, Odinot E, Villeneuve P, Lecomte J. Challenges and advances in biotechnological approaches for the synthesis of canolol and other vinylphenols from biobased p-hydroxycinnamic acids: a review. Biotechnol Biofuels Bioprod. 2023;16(1):173. https://doi.org/10.1186/s13068-023-02425-w
  48. 48. Rajkumari J, Borkotoky S, Reddy D, Mohanty SK, Kumavath R, Murali A, et al. Anti-quorum sensing and anti-biofilm activity of 5-hydroxymethylfurfural against Pseudomonas aeruginosa PAO1: insights from in vitro, in vivo and in silico studies. Microbiol Res. 2019;226:19-26. https://doi.org/10.1016/j.micres.2019.05.001
  49. 49. Jhariya S, Kakkar A. Analysis of bioactive components from ethyl acetate and ethanol extract of Mucuna pruriens Linn. seeds by GC-MS technique. J Chem Pharm Res. 2016;8(8):403-9.
  50. 50. Borges De Melo E, Da Silveira Gomes A, Carvalho I. α- and β-glucosidase inhibitors: chemical structure and biological activity. Tetrahedron. 2006;62(44):10277-302. https://doi.org/10.1016/j.tet.2006.08.055
  51. 51. Momodu IB, Okungbowa ES, Agoreyo BO, Maliki MM. Gas chromatography-mass spectrometry identification of bioactive compounds in methanol and aqueous seed extracts of Azanza garckeana fruits. Niger J Biotechnol. 2022;38(1):25-38. https://doi.org/10.4314/njb.v38i1.3S
  52. 52. Deepthi K, Rahman H, Renjith PK, Ajeeshkumar KK, Chandramohanakumar N. Structural and morphological characterization, anticancer and antimicrobial study of 20EA column fraction in Sesbania grandiflora. Vegetos. 2024. https://doi.org/10.1007/s42535-024-01117-6
  53. 53. Sivaranjani V, Malarvili T, Suganthi K, Mahalakshmi S. Determination of bioactive compounds in Ulva reticulata extract using GC-MS technique. Int J Mod Agric. 2021;10(2):3309-14.

Downloads

Download data is not yet available.